Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brückenschlag zwischen Nanophotonik und Nanomechanik

18.10.2011
Bayerisch-Kalifornische Wellenoptik: In nature photonics berichten Forscher aus Augsburg und Santa Barbara über einen von ihnen konstuierten Kristall, der die für zahlreiche Anwendungen dringend benötigte akustisch gesteuerte "Einzelphotonenquelle" in greifbare Nähe rückt.

Forschern der Universität Augsburg, die am "Augsburg Center for Innovative Technologies" (ACIT) sowie am "Center for NanoScience" (CeNS) und im Exzellenzcluster "Nanosystems Initiative Munich" (NIM) arbeiten, ist es gemeinsam mit Kolleginnen und Kollegen vom "California Nano Systems Institute" (CNSI) an der University of California in Santa Barbara (UCSB) gelungen, im wahrsten Sinne des Wortes eine Brücke zwischen Nanophotonik und Nanomechanik zu schlagen:


Darstellung eines photonischen Kristalls unter dem Einfluss einer akustischen Oberflächenwelle, die diesen periodisch räumlich und zeitlich moduliert. Dadurch ist es möglich, die "Farbe" des abgestrahlten Lichts mit der Frequenz des "Nanobebens" um mehrere Linienbreiten spektral zu verschieben. Bild: H. Krenner

In der jüngsten Ausgabe der renommierten Fachzeitschrift "nature photonics" berichten sie über einen durch Ultraschall steuerbaren photonischen Kristall, in dem quantenmechanische Effekte dafür sorgen, dass Lichtquanten (Photonen) mit hoher Effizienz und sehr schnell in diesem Kristall erzeugt und moduliert werden können. In greifbare Nähe rückt damit eine hoch effiziente, akustisch gesteuerte "Einzelphotonenquelle", wie sie für zahlreiche Anwendungen dringend benötigt wird.

Um zu ihren bahnbrechenden Ergebnissen zu gelangen, stellten die Forscherinnen und Forscher eine frei tragende, hauchdünne Membran aus einem Halbleitermaterial her, in die mit Methoden der Nanotechnologie eine grosse Zahl periodisch angeordneter winziger Löcher geätzt wurde. In einer solchen, photonischer Kristall genannten Struktur kann sich das Licht nur in einem engen Frequenzbereich und entlang ausgezeichneter Richtungen ausbreiten. Als Lichtquelle werden in den Kristall so genannte Quantenpunkte integriert, die - gleichsam wie künstliche Atome - nur Licht einer ganz bestimmten Wellenlänge aussenden. Das besondere an den Quantenpunkten ist, dass das Licht sie in Form einzelner Lichtquanten (Photonen) verlässt.

Bis auf deutlich weniger als einen Nanometer passgenau

Bislang war es allerdings technologisch nicht möglich, die Frequenz bzw. Wellenlänge dieser Quanten-Lichtquellen exakt auf den Durchlassbereich des photonischen Kristalls abzustimmen. Denn um dies zu erreichen, müssen beide - die Lichtquellen und der Durchlassbereich - bis auf deutlich weniger als einen Nanometer zur Deckung gebracht werden. Gelingt dies jedoch, kann bei genügend hoher Güte des photonischen Kristalls das Lichtfeld des Emitters mit diesem in Resonanz gebracht werden. Der quantenmechanische "Purcell-Effekt" sorgt dann dafür, dass eine immens erhöhte Lichtausbeute erzielt werden kann.

Zehnmal so schnell und wesentlich präziser als jeder andere Ansatz

Dieses Problem haben die Forscherinnen und Forscher aus Augsburg und Santa Barbara nun ebenso einfach wie elegant gelöst: Durch den Einsatz winziger Erdbeben auf dem Kristall, durch so genannte akustische Oberflächenwellen, ist es möglich, die Halbleitermembran mit ihren vielen, präzise angeordneten Löchern zusammen mit den Quantenpunkten bei Mikrowellenfrequenzen periodisch zu dehnen und zu strecken (s. Abbildung). Durch diese periodische Dehnung und Streckung wird innerhalb einer drittel Nanosekunde auch der Durchlassbereich des photonischen Kristalls periodisch hin und hergeschaltet und mit dem Licht der Quantenpunkte in Resonanz gebracht - und zwar zehnmal so schnell und wesentlich präziser als mit irgendeinem anderen Ansatz weltweit.

Akustische Oberflächenwellen: eine Spezilität der Augsburger Forschungsgruppe

Der Doktorand Daniel Fuhrmann und sein Betreuer Dr. Hubert Krenner, der am Lehrstuhl für Experimentalphysik I der Universität Augsburg (Prof. Dr. Achim Wixforth) eine Emmy-Noether-Nachwuchsgruppe leitet, sind begeistert über den Erfolg: "Nachdem die Idee des akustisch modulierten photonischen Kristalls schon einige Zeit in unserer Forschungsgruppe existiert, ist es eine besondere Freude, wenn man nach vielen technologischen Mühen und Anstrengungen dann eines Tages erstmals wirklich die rasend schnelle Modulation der Emissionswellenlänge im Takt des Nanobebens auf dem Chip sehen kann", so Daniel Fuhrmann. "Wir haben - und das freut mich nicht minder - wieder einmal gezeigt, dass unsere Spezialität, die akustischen Oberflächenwellen nämlich, auch im Bereich der Nanophotonik für große Überraschungen und exzellente Forschungsergebnisse gut sind!"

Das "Nanobeben auf dem Chip": immer wieder gut für beachtliche Ergebnisse

In der Augsburger Arbeitsgruppe werden solche Wellen nämlich für ganz unterschiedliche Zwecke über die Chips gejagt: In einem vielfältigen Spektrum, das von Biochips zur Untersuchung einzelner Zellen über die Vervielfältigung genetischen Materials oder das Verständnis biophysikalischer Phänomene wie der Blutgerinnung bis hin zur Untersuchung von Quanten Halleffekt und Metall-Isolatorübergängen reicht, haben die "Nanobeben auf dem Chip" in den vergangenen Jahren immer wieder beachtliche Forschungsergebnisse ermöglicht, mit denen sich die Arbeitsgruppe einen Namen auf der ganzen Welt gemacht hat.

Ergebnis bewährter bayerisch-kalifornischer High-Tech-Kooperation

Über sein spektakuläres Ergebnis hinaus ist das Experiment von Daniel Fuhrmann und seinen bayerisch-kalifornischen Kolleginnen und Kollegen auch ein hervorragendes Beispiel für die internationale Zusammenarbeit zwischen den beiden High-Tech-Bundestaaten diesseits und jenseits des Atlantiks: Sowohl Krenner als auch Wixforth haben lange Zeit an der UCSB in Santa Barbara geforscht und sind dort häufige Gäste. Das Projekt wurde mit Mitteln des Bayerisch-Kalifornischen Hochschulzentrums (BaCaTeC) anschubfinanziert und dann im Rahmen eines Forschungsstipendiums der Bayerischen Forschungsstiftung (BFS) durchgeführt.

Für Anwendungen bis hin zum 'optischen Computer' dringend benötigt

"Wir sind überzeugt davon", so Wixforth, "dass basierend auf den bahnbrechenden Ergebnissen dieser Forschungskooperation in Kürze eine hoch effiziente, akustisch gesteuerte 'Einzelphotonenquelle' realisiert werden kann, wie sie für Anwendungen in der Quantenoptik, in der Kryptografie oder auch für den 'optischen Computer' dringend benötigt wird."

Originalbeitrag:

D. A. Fuhrmann, Susanna M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, H. J. Krenner, Nature Photonics 5, 605–609 (2011). doi:10.1038/nphoton.2011.208

http://www.nature.com/nphoton/journal/v5/n10/abs/nphoton.2011.208.html

Ansprechpartner:

• Prof. Dr. Achim Wixforth
achim.wixforth@physik.uni-augsburg.de
• Dr. Hubert J. Krenner
hubert.krenner@physik. uni-augsburg.de
• Daniel A. Fuhrmann
daniel.fuhrmann@physik.uni-augsburg.de
Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3301

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie