Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brückenschlag zwischen Nanophotonik und Nanomechanik

18.10.2011
Bayerisch-Kalifornische Wellenoptik: In nature photonics berichten Forscher aus Augsburg und Santa Barbara über einen von ihnen konstuierten Kristall, der die für zahlreiche Anwendungen dringend benötigte akustisch gesteuerte "Einzelphotonenquelle" in greifbare Nähe rückt.

Forschern der Universität Augsburg, die am "Augsburg Center for Innovative Technologies" (ACIT) sowie am "Center for NanoScience" (CeNS) und im Exzellenzcluster "Nanosystems Initiative Munich" (NIM) arbeiten, ist es gemeinsam mit Kolleginnen und Kollegen vom "California Nano Systems Institute" (CNSI) an der University of California in Santa Barbara (UCSB) gelungen, im wahrsten Sinne des Wortes eine Brücke zwischen Nanophotonik und Nanomechanik zu schlagen:


Darstellung eines photonischen Kristalls unter dem Einfluss einer akustischen Oberflächenwelle, die diesen periodisch räumlich und zeitlich moduliert. Dadurch ist es möglich, die "Farbe" des abgestrahlten Lichts mit der Frequenz des "Nanobebens" um mehrere Linienbreiten spektral zu verschieben. Bild: H. Krenner

In der jüngsten Ausgabe der renommierten Fachzeitschrift "nature photonics" berichten sie über einen durch Ultraschall steuerbaren photonischen Kristall, in dem quantenmechanische Effekte dafür sorgen, dass Lichtquanten (Photonen) mit hoher Effizienz und sehr schnell in diesem Kristall erzeugt und moduliert werden können. In greifbare Nähe rückt damit eine hoch effiziente, akustisch gesteuerte "Einzelphotonenquelle", wie sie für zahlreiche Anwendungen dringend benötigt wird.

Um zu ihren bahnbrechenden Ergebnissen zu gelangen, stellten die Forscherinnen und Forscher eine frei tragende, hauchdünne Membran aus einem Halbleitermaterial her, in die mit Methoden der Nanotechnologie eine grosse Zahl periodisch angeordneter winziger Löcher geätzt wurde. In einer solchen, photonischer Kristall genannten Struktur kann sich das Licht nur in einem engen Frequenzbereich und entlang ausgezeichneter Richtungen ausbreiten. Als Lichtquelle werden in den Kristall so genannte Quantenpunkte integriert, die - gleichsam wie künstliche Atome - nur Licht einer ganz bestimmten Wellenlänge aussenden. Das besondere an den Quantenpunkten ist, dass das Licht sie in Form einzelner Lichtquanten (Photonen) verlässt.

Bis auf deutlich weniger als einen Nanometer passgenau

Bislang war es allerdings technologisch nicht möglich, die Frequenz bzw. Wellenlänge dieser Quanten-Lichtquellen exakt auf den Durchlassbereich des photonischen Kristalls abzustimmen. Denn um dies zu erreichen, müssen beide - die Lichtquellen und der Durchlassbereich - bis auf deutlich weniger als einen Nanometer zur Deckung gebracht werden. Gelingt dies jedoch, kann bei genügend hoher Güte des photonischen Kristalls das Lichtfeld des Emitters mit diesem in Resonanz gebracht werden. Der quantenmechanische "Purcell-Effekt" sorgt dann dafür, dass eine immens erhöhte Lichtausbeute erzielt werden kann.

Zehnmal so schnell und wesentlich präziser als jeder andere Ansatz

Dieses Problem haben die Forscherinnen und Forscher aus Augsburg und Santa Barbara nun ebenso einfach wie elegant gelöst: Durch den Einsatz winziger Erdbeben auf dem Kristall, durch so genannte akustische Oberflächenwellen, ist es möglich, die Halbleitermembran mit ihren vielen, präzise angeordneten Löchern zusammen mit den Quantenpunkten bei Mikrowellenfrequenzen periodisch zu dehnen und zu strecken (s. Abbildung). Durch diese periodische Dehnung und Streckung wird innerhalb einer drittel Nanosekunde auch der Durchlassbereich des photonischen Kristalls periodisch hin und hergeschaltet und mit dem Licht der Quantenpunkte in Resonanz gebracht - und zwar zehnmal so schnell und wesentlich präziser als mit irgendeinem anderen Ansatz weltweit.

Akustische Oberflächenwellen: eine Spezilität der Augsburger Forschungsgruppe

Der Doktorand Daniel Fuhrmann und sein Betreuer Dr. Hubert Krenner, der am Lehrstuhl für Experimentalphysik I der Universität Augsburg (Prof. Dr. Achim Wixforth) eine Emmy-Noether-Nachwuchsgruppe leitet, sind begeistert über den Erfolg: "Nachdem die Idee des akustisch modulierten photonischen Kristalls schon einige Zeit in unserer Forschungsgruppe existiert, ist es eine besondere Freude, wenn man nach vielen technologischen Mühen und Anstrengungen dann eines Tages erstmals wirklich die rasend schnelle Modulation der Emissionswellenlänge im Takt des Nanobebens auf dem Chip sehen kann", so Daniel Fuhrmann. "Wir haben - und das freut mich nicht minder - wieder einmal gezeigt, dass unsere Spezialität, die akustischen Oberflächenwellen nämlich, auch im Bereich der Nanophotonik für große Überraschungen und exzellente Forschungsergebnisse gut sind!"

Das "Nanobeben auf dem Chip": immer wieder gut für beachtliche Ergebnisse

In der Augsburger Arbeitsgruppe werden solche Wellen nämlich für ganz unterschiedliche Zwecke über die Chips gejagt: In einem vielfältigen Spektrum, das von Biochips zur Untersuchung einzelner Zellen über die Vervielfältigung genetischen Materials oder das Verständnis biophysikalischer Phänomene wie der Blutgerinnung bis hin zur Untersuchung von Quanten Halleffekt und Metall-Isolatorübergängen reicht, haben die "Nanobeben auf dem Chip" in den vergangenen Jahren immer wieder beachtliche Forschungsergebnisse ermöglicht, mit denen sich die Arbeitsgruppe einen Namen auf der ganzen Welt gemacht hat.

Ergebnis bewährter bayerisch-kalifornischer High-Tech-Kooperation

Über sein spektakuläres Ergebnis hinaus ist das Experiment von Daniel Fuhrmann und seinen bayerisch-kalifornischen Kolleginnen und Kollegen auch ein hervorragendes Beispiel für die internationale Zusammenarbeit zwischen den beiden High-Tech-Bundestaaten diesseits und jenseits des Atlantiks: Sowohl Krenner als auch Wixforth haben lange Zeit an der UCSB in Santa Barbara geforscht und sind dort häufige Gäste. Das Projekt wurde mit Mitteln des Bayerisch-Kalifornischen Hochschulzentrums (BaCaTeC) anschubfinanziert und dann im Rahmen eines Forschungsstipendiums der Bayerischen Forschungsstiftung (BFS) durchgeführt.

Für Anwendungen bis hin zum 'optischen Computer' dringend benötigt

"Wir sind überzeugt davon", so Wixforth, "dass basierend auf den bahnbrechenden Ergebnissen dieser Forschungskooperation in Kürze eine hoch effiziente, akustisch gesteuerte 'Einzelphotonenquelle' realisiert werden kann, wie sie für Anwendungen in der Quantenoptik, in der Kryptografie oder auch für den 'optischen Computer' dringend benötigt wird."

Originalbeitrag:

D. A. Fuhrmann, Susanna M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, H. J. Krenner, Nature Photonics 5, 605–609 (2011). doi:10.1038/nphoton.2011.208

http://www.nature.com/nphoton/journal/v5/n10/abs/nphoton.2011.208.html

Ansprechpartner:

• Prof. Dr. Achim Wixforth
achim.wixforth@physik.uni-augsburg.de
• Dr. Hubert J. Krenner
hubert.krenner@physik. uni-augsburg.de
• Daniel A. Fuhrmann
daniel.fuhrmann@physik.uni-augsburg.de
Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3301

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik