Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brücke aus Dunkler Materie in kosmischer Nachbarschaft

14.07.2015

Mithilfe neuester Beobachtungsdaten haben Noam Libeskind vom Leibniz-Institut für Astrophysik Potsdam (AIP) und sein Team eine genaue Karte der Bewegung naher Galaxien in unserer kosmischen Nachbarschaft erstellt. Darin entdeckten sie eine Brücke aus Dunkler Materie, die sich von der Lokalen Gruppe bis hin zum Virgo-Galaxienhaufen erstreckt. Die Karte zeigt auch, dass der Virgo-Galaxienhaufen, eine riesige Ansammlung von fast 2.000 Galaxien in rund 50 Millionen Lichtjahren Entfernung, von gewaltigen, galaxienlosen Hohlräumen umgeben ist. Beide Entdeckungen helfen, das rund 40 Jahre alte Problem der Verteilung von Zwerggalaxien zu lösen.

Zwerggalaxien umgeben scheinbar gleichmäßig verteilt größere Galaxien. Da sie sehr leuchtschwach sind, ist es schwer sie zu beobachten, so dass sie bisher fast ausschließlich in unserer unmittelbaren kosmischen Nachbarschaft gefunden wurden.


Die Bewegungsmuster von Zwerggalaxien entlang von Brücken aus Dunkler Materie Richtung des Virgo-Galaxienhaufens im Umkreis der Milchstraße, Andromeda und Centaurus A.

AIP / Noam I. Libeskind

Betrachtet man die Bewegung der Zwerggalaxien in der Nähe unserer Milchstraße und um unsere Nachbargalaxien Andromeda und Centaurus A ergibt sich ein faszinierendes Bild: die Zwerggalaxien sind nicht gleichmäßig verteilt, sondern zu einer riesigen, flachen, wahrscheinlich sogar rotierenden Scheibe verdichtet. Solche Strukturen sind nicht zwangsweise mit Standardmodellen zur Galaxienentwicklung erklärbar und stellen daher eine Herausforderung für die gegenwärtige astronomische Forschung dar.

Denkbar ist, dass diese kleinen Galaxien die Geometrie größerer Strukturen spiegeln. „Zum ersten Mal konnten wir über Beobachtungsdaten nachweisen, dass sogenannte ‚super highways’ die Zwerggalaxien durch den gesamten kosmischen Raum über Brücken aus Dunkler Materie leiten“, so Noam Libeskind.

Diese kosmischen „super highways“ dienen den vorbeiziehenden Satelliten als Startrampe über die sie Richtung Milchstraße, Andromeda oder Centaurus A geschossen werden. „Es ist beeindruckend, wie sehr diese galaktischen Brücken die Zwerggalaxien beeinflussen“, fährt Libeskind fort „insbesondere, wenn man den Größenunterschied bedenkt: die Scheibe, auf der die Zwerggalaxien sich sammeln hat in etwa ein Prozent der Größe der galaktischen Brücke Richtung Virgo-Galaxienhaufen.“

Wissenschaftlicher Kontakt:
Dr. Noam Libeskind, 0331 7499 641, nlibeskind@aip.de

Pressekontakt:
Kerstin Mork, 0331-7499 803, presse@aip.de

Das Leibniz-Institut für Astrophysik Potsdam (AIP) widmet sich astrophysikalischen Fragen, die von der Untersuchung unserer Sonne bis zur Entwicklung des Kosmos reichen. Forschungsschwerpunkte sind dabei kosmische Magnetfelder und extragalaktische Astrophysik sowie die Entwicklung von Forschungstechnologien in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Seinen Forschungsauftrag führt das AIP im Rahmen zahlreicher nationaler, europäischer und internationaler Kooperationen aus. Das Institut ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Seit 1992 ist das AIP Mitglied der Leibniz-Gemeinschaft.

Weitere Informationen:

http://mnras.oxfordjournals.org/content/452/1/1052.full?keytype=ref&ijkey=9r... Publikation: Planes of satellite galaxies and the cosmic web. In MNRAS.
http://www.aip.de/de/aktuelles/presse/super-highway AIP-Pressemeldung

Kerstin Mork | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics