Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremer Wissenschaftler steuern CCF-Experiment auf der Internationalen Raumstation

03.01.2011
Auf der Internationalen Raumstation ISS ist am 2. Januar 2011 eine neue Versuchsanlage in Betrieb genommen worden, die der Untersuchung des Kapillarverhaltens von Flüssigkeiten unter Schwerelosigkeit dient.

Konkret geht es um die Frage, wie es im All möglich ist, Flüssigkeiten mit Hilfe von Kapillarkanälen blasenfrei zu transportieren. Im Laufe der mehrmonatigen Experimentserie, die das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) von Bremen aus steuert, wird insbesondere geklärt, welche Strömungsgeschwindigkeiten möglich sind, ohne dass der Flüssigkeitsstrom abreißt.

Das CCF-Projekt (Capillary Channel Flow) ist ein gelungenes Beispiel für eine internationale Forschungs-Kooperation: Wissenschaftler der Portland State University (PSU) und des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen führen mit Hilfe der Astronauten auf der ISS strömungstechnische Experimente durch. Der technisch aufwändige Versuchsapparat wurde von Astrium in Friedrichshafen gebaut und mit dem 38. Shuttle-Flug (Flug STS 131 des Space Shuttle Discovery) am 5. April 2010 zur Raumstation befördert. Dieser wurde nun an Bord der ISS von den Astronauten in die sogenannte Microgravity Science Glovebox (MSG) eingebaut. Nachdem der Aufbau und die Inbetriebnahme noch vom NASA-Stützpunkt Marshall Space Flight Center (MSFC) in Huntsville, Alabama, koordiniert wurde, wird die Versuchseinheit im weiteren Verlauf des Experimentes vollständig von der Bodenkontrollstation des ZARM in Bremen gesteuert.

Zum Ziel der Forschungsarbeiten

Der praktische Nutzen der Forschungsarbeiten dient der Handhabung unterschiedlicher Flüssigkeiten, beispielsweise von Treibstoffen, im All. Im Treibstofftank eines Satelliten oder eines Raumfahrzeugs bleibt der Treibstoff nicht am Boden - wie in einem Benzintank auf der Erde -, sondern verteilt sich an den Tankinnenwänden und anderen Bauteilen. Daher ist eine Vorrichtung notwendig, die den Treibstoff dorthin befördert, wo er gebraucht wird. Zur Flüssigkeitshandhabung im All macht man sich unter anderem die sogenannten Adhäsions- und Kohäsionskräfte zunutze. Hinter dem Ausdruck Adhäsionskraft steht die Neigung von Molekülen unterschiedlicher Stoffe, sich aneinanderzuheften. Solche Kräfte führen zum Beispiel dazu, dass Flüssigkeit die Innenwand eines Tanks benetzt. Mit Kohäsionskräften werden die Anziehungskräfte bezeichnet, die zwischen den Flüssigkeitsmolekülen wirken.

Ziel der gegenwärtigen Untersuchungen ist es, die Flüssigkeit mit Hilfe von Kapillarkanälen blasenfrei zu fördern. Dabei strömt die Flüssigkeit zwischen zwei parallel angeordneten Platten zum Auslass aus dem Tank. Der Kanal ist oben und unten begrenzt und seitlich offen. Dass der angesaugte Treibstoff trotzdem zwischen den Platten bleibt, liegt an den erwähnten Kräften und der daraus resultierenden Oberflächenspannung. Bei dem Experiment soll insbesondere geklärt werden, welche Strömungsgeschwindigkeiten möglich sind, ohne dass Blasen mit angesaugt werden oder der Flüssigkeitsstrom abreißt.

Die Flüssigkeit zu sammeln und blasenfrei zum Auslass zu befördern, bedarf daher besonderer technischer Lösungen, an denen Wissenschaftler schon seit Jahren arbeiten. Der Versuchsaufbau ist zuvor im Bremer Fallturm und bei ballistischen Raketenflügen in bis zu 270 Kilometer Höhe getestet worden. Für die Experimente auf der Raumstation steht nun wesentlich mehr Zeit zur Verfügung als bisher und ermöglicht damit die Variation diverser Strömungsparameter, wie zum Beispiel der Kanallänge, des Volumenstroms, der Änderung des Volumenstromes sowie eine Oszillation der Strömung. Im Rahmen der Mission werden extrem große Datenmengen, u. a. Bilder von Hochgeschwindigkeitskameras, aufgenommen, verarbeitet und nach Bremen übertragen. Deren Auswertung wird die vorhandenen mathematischen Modelle von Kapillarströmungen validieren und so deren Zuverlässigkeit zur Optimierung technischer fluidmechanischer Bauteile erhöhen.

Zum Team

Das CCF-Projekt wird durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) gefördert und von der NASA unterstützt. Das internationale Team besteht aus Michael Dreyer, Aleksander Grah, Jörg Klatte und Peter Canfield vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) sowie Mark Weislogel und Yongkang Chen von der Portland State University (PSU).

Weitere Informationen:

Universität Bremen
Fachbereich Produktionstechnik
Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation
Prof. Dr. Michael Dreyer
Tel. 0421 / 218 4038
E-Mail: michael.dreyer@zarm.uni-bremen.de
und
Birgit Kinkeldey (PR& Communications)
ZARM Fallturm-Betriebsgesellschaft mbH
Tel. 0421 218-4801
E-Mail: birgit.kinkeldey@zarm.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.zarm.uni-bremen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics