Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremer Forscher präsentieren die kleinsten Stadtmusikanten der Welt: Nur so hoch wie ein Haar dick ist

23.09.2009
Dreidimensional hergestellt mithilfe der Nanolithografie: Bremer Mikro-Quartett Esel, Hund, Katze und Hahn / BIAS und Nanoscribe streben Eintrag ins Guinness-Buch der Rekorde an / BIAS richtet Nanostrukturlabor ein

Nicht einfach nur mini, sondern mikro: Mit bloßem Auge sind die Bremer Stadtmusikanten nicht mehr zu erkennen. Jedenfalls nicht die, die durch eine Zusammenarbeit des Bremer Instituts für angewandte Strahltechnik (BIAS GmbH) an der Universität Bremen mit der Nanoscribe GmbH in Eggenstein-Leopoldshafen bei Karlsruhe entstanden sind.

Nun streben beide den Eintrag ins Guinness-Buch der Rekorde an. Bei gutem Auge sind alle vier Musikanten zusammen vielleicht noch als Pünktchen zu erahnen, und den Beweis für ihre Existenz kann nur die Aufnahme mit einem Rasterelektronenmikroskop (REM) liefern.

Was vielleicht anmutet wie eine Spielerei, hat durchaus einen ernsthaften Hintergrund. Für seine Forschungen suchte das BIAS nach einem System, das extrem kleine Objekte mit einem Laser-Lithografie-Verfahren herstellen kann. Das ist eine Methode, bei der mithilfe von Laserlicht und lichtempfindlichen Materialien zwei- und dreidimensionale Strukturen geschaffen und reproduziert werden können. Angewendet werden solche Verfahren zum Beispiel zur Herstellung von Strukturen in der Halbleitertechnologie bei der Produktion von Computer-Chips. Die filigranen Leiterbahnen auf den Chips entstehen durch Belichtungsprozesse, ähnlich wie bei der Entwicklung von Fotos, wo die lichtempfindliche Schicht auf dem weißen Fotopapier durch das Film-Negativ hindurch belichtet und dadurch ein chemischer Prozess in der Schicht ausgelöst wird. Alle Flächen des Fotopapiers, auf die kein Licht gefallen ist, bleiben weiß; die belichteten Flächen reagieren je nach Intensität des Lichteinfalls unterschiedlich stark. Das Laser-Lithografie-Verfahren ist um einiges komplizierter, funktioniert aber nach demselben Prinzip.

Die Anforderungen der Bremer Wissenschaftler an die Leistungsfähigkeit des gewünschten Systems waren sehr anspruchsvoll und BIAS-Wissenschaftler Colin Dankwart begab sich auf die weltweite Suche. Fündig wurde er in Baden-Württemberg. Die Nanoscribe GmbH in Eggenstein-Leopoldshafen bei Karlsruhe verfügte über das erforderliche Wissen und die richtigen Anlagen. Nun musste nur noch an einem Beispiel gezeigt werden, was das Nanoscribe-System kann. "Warum soll man das nicht anhand eines weltbekannten Motives demonstrieren?", sagte sich Prof. Ralf B. Bergmann. Seit Juli 2008 leitet er den Geschäftsbereich "Optische Messtechnik und optoelektronische Systeme" am BIAS und trat gleichzeitig eine Professur für "Angewandte Optik" im Fachbereich Physik/Elektrotechnik der Universität Bremen an. Dass sich die Stadtmusikanten auch als Objekt zur Erklärung komplexer Untersuchungen bestens eignen, hatte Bergmann schon anlässlich seiner Antrittsvorlesung "Angewandte Optik - Schlüsseltechnologie für das 21. Jahrhundert" bewiesen.

Die Entstehung der Bremer Mikro-Musikanten

Und wie sind die winzigen Musikanten nun entstanden? Man kann es sich einfach vorstellen wie ein dreidimensionales Schreiben oder Zeichnen: Als Bleistift fungiert ein Laserstrahl, der nicht auf Papier sondern in dem Fotolack schreibt, der auf einen Objektträger eines Mikrokops aufgetragen wurde. Dieser Laser ist ein Femtosekunden-Pulslaser, dessen ohnehin schon gebündeltes Licht durch ein Linsensystem weiter fokussiert wird. Genau in diesem Fokus, wo die Energie des Lichtstrahls am größten ist, zeichnet sich dieser Pulslaser durch eine besondere Leistungsstärke aus. Anders ausgedrückt: Spitzer kann dieser "Bleistift" nicht sein; eine bessere Auflösung zur Herstellung dreidimensionaler Objekte gibt es derzeit kaum. Im Fokus dieses gebündelten Pulslaser-Lichtes nimmt der lichtempfindliche Fotolack die Energie auf: Der Fotolack absorbiert das Licht, es findet ein chemischer Prozess statt, und der Lack härtet an dieser Stelle aus. Fachleute sprechen hier von einem Zwei-Photonen-Prozess. Möglich wird der durch die extrem hohe Energiedichte im zentralen Bereich des fokussierten Lichtes dieses Lasers. Das System fährt die vorgegebenen Strukturen ab. Die Geometriedaten der Bremer Stadtmusikanten (die dreidimensionale, digitale Form) wurden im BIAS erstellt. "Diese 3D-Zeichnungen haben dem System gewissermaßen alle geometrischen Eckdaten für die Belichtung vorgegeben", erklärt BIAS-Wissenschaftler Dankwart. Aber auch wenn der Belichtungsprozess abgeschlossen sei, sehe man noch nichts, setzt er nach. In einem letzten Schritt werde das nicht belichtete, also nicht ausgehärtete Material entfernt - und dann stehen sie da, die Bremer Stadtmusikanten, mal gerade rund 80 Mikrometer "groß", also nur so hoch wie ein durchschnittliches, menschliches Kopfhaar dick ist.

Miniaturisierung von Optiken - neues Nanostrukturlabor

Und wofür braucht das BIAS das System? Bergmann erklärt: "Die Optik ist eine der wesentlichen Schlüsseltechnologien unserer Zeit. Ihre Bedeutung reicht weit über Produkte wie zum Beispiel Kameras, medizinische Geräte, Mobiltelefone oder Bildschirme hinaus. Auch in vielen anderen Bereichen wie der Entwicklung neuer Werkstoffe und Produktionsverfahren, der Qualitätssicherung oder der Informationstechnologie bis hin zur Optimierung regenerativer Energiewandler spielen optische Technologien eine entscheidende Rolle." Für die weitere Optimierung bestehender oder die Entwicklung neuer Produkte müssen auch Optiken miniaturisiert werden. Genau daran forscht das Wissenschaftler-Team rund um Bergmann. "Die Möglichkeiten mit konventionellen Optiken sind da recht begrenzt", sagt er. Für neue Entwicklungen werden diffraktive optische Elemente benötigt (diffraktiv: das Licht beugend). Mit ihnen lässt sich das Licht in weitaus flexiblerer Art und Weise beeinflussen als zum Beispiel mit herkömmlichen Linsenoptiken. Aber diese Elemente haben Strukturgrößen, die wesentlich kleiner sind als die sichtbaren Lichtwellenlängen. Mit dem neuen System - es wird künftig im neuen Nanostrukturlabor des BIAS stehen - können die Forscher solche 3D-Nano-Strukturen für optische Anwendungen herstellen.

Nanoscribe: Herstellung dreidimensionaler Mikro- und Nanostrukturen

Die Nanoscribe GmbH ist eine Ausgründung des Forschungszentrums Karlsruhe GmbH und der Universität Karlsruhe (TH). Das Unternehmen entwickelt und vertreibt Laser-Lithografiesysteme für die Herstellung dreidimensionaler Nano- und Mikrostrukturen in kommerziell erhältlichen Fotolacken sowie Prozess-Technologien für die dreidimensionale Mikro- und Nanostrukturierung. Es entwickelt auch selbst Fotolacke für die 3D-Laser-Lithografie. "Der Aufbau komplexer 3D-Nano- und Mikrostrukturen, wie sie in der Forschung und in der optischen Industrie immer stärker nachgefragt werden, ist mittels konventioneller Techniken - wenn überhaupt - nur in aufwändigen Verfahren möglich", erklärt Nanoscribe-Geschäftsführer Dipl.-Phys. Martin Hermatschweiler. "Mit unseren 3D-Laserlithografen erreichen wir aktuell minimal erzielbare Strukturgrößen von ungefähr 100 Nanometer - für zwei- und dreidimensionale Strukturen." Das ist ein Zehntausendstel Millimeter. Eingesetzt werde das System für anwendungsorientierte Grundlagenforschungen zum Beispiel in den Bereichen der Zellbiologie, der Photonik oder den Materialwissenschaften.

BIAS: Forschung zu Lasertechnik für Materialbearbeitung und zu Optischer Messtechnik

Das Bremer Institut für angewandte Strahltechnik GmbH ist eines der ältesten und größten Forschungsinstitute in Bremen. Seit 1977 führt es anspruchsvolle Forschungs- und Entwicklungsaufgaben auf dem Gebiet der Lasermaterialbearbeitung und der optischen Messtechnik durch und hat sich mit seinen Forschungen ein internationales Renommee erworben. Das BIAS arbeitet sowohl in Kooperation mit der Industrie als auch im Rahmen öffentlich geförderter nationaler und internationaler Forschungsvorhaben. Es ist an mehreren Sonderforschungsbereichen (SFB) der Deutschen Forschungsgemeinschaft an der Universität Bremen beteiligt, initiierte den SFB "Mikrokaltumformen - Prozesse, Charakterisierung, Optimierung" (SFB 747) und hat hier auch die Federführung. Das BIAS entwickelte unter anderem Schweißverfahren, die heute im Flugzeug- und Schiffbau, sowie im Schienenfahrzeug- und im Automobilbau eingesetzt werden. Die am BIAS entwickelten optischen Messmethoden werden sowohl für sehr große Strukturen als auch für die sehr kleinen im Nanometerbereich verwendet. Die Einsatzgebiete: für die Sicherheit von Flugzeugen bis hin zu Messungen beim Tagebau oder für die Bestimmung des Umweltzustandes der Ostsee. Zudem trägt das Institut mit seinen Forschungen zur Holographie zum Aufbau des dreidimensionalen Fernsehens bei.

(Sabine Nollmann)

Ihre Ansprechpartner:

Prof. Dr. rer. nat. Ralf B. Bergmann (Geschäftsführer am BIAS)
Telefon: 0421 218-50 03, E-Mail: bergmann@bias.de
Dipl.-Phys. Martin Hermatschweiler (Geschäftsführer Nanoscribe GmbH)
Telefon: 07247 82-88 41, E-Mail: hermatschweiler@nanoscribe.de

Maya Schulte | idw
Weitere Informationen:
http://www.bias.de
http://www.bias.de/Events/Archive/AntrittsvorlesungBergmann
http://www.nanoscribe.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Workshop »Emissionsarme Bauprodukte und Wohngesundheit«

28.03.2017 | Seminare Workshops

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungsnachrichten

Nachwuchswissenschaftler blicken in die Quantenwelt

28.03.2017 | Seminare Workshops