Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Botschaften aus dem Mittelalter des Universums

16.12.2015

Erstmals haben Wissenschaftlerinnen und Wissenschaftler Gammastrahlung bei einer bekannten, weit entfernten Galaxie beobachtet. Im Zentrum der aktiven Galaxie PKS 1441+25 befindet sich ein massereiches schwarzes Loch, das von einer leuchtenden Materiescheibe umgeben ist. Die aktuelle Beobachtung führt nicht nur zu einem besseren Verständnis aktiver Galaxien: Da das Licht von PKS 1441+25 etwa 7,6 Milliarden Jahre zur Erde unterwegs ist, erhoffen sich Forscher auch neue Erkenntnisse aus dem "Mittelalter" des Universums, das vor 13,8 Milliarden Jahren entstand.

PKS 1441+25 zählt zu den etwa zehn Prozent aktiver Galaxien im Universum. Ihr gemeinsames Kennzeichen: Sie produzieren mehr Licht als sich allein mit der Helligkeit von Sternen und Staub erklären ließe. In ihrem Zentrum befindet sich ein supermassereiches schwarzes Loch, das fast so schwer ist wie eine Milliarde Sonnen.


Das extragalaktische Hintergrundlicht – eine Art kosmischer Nebel – schwächt energiereiche Gammastrahlung von weit entfernten Quasaren ab.

NASA Goddard Space Flight Center/MAGIC

Die schwarzen Löcher üben eine starke Gravitationskraft auf die Materie in ihrer Umgebung aus. Bevor die Materie vom schwarzen Loch verschluckt wird, kreist sie als hell leuchtende Scheibe um den aktiven Kern. PKS 1441+25 gehört außerdem zur Klasse der extrem hellen Quasare: Bei diesen Objekten werden Elementarteilchen als so genannte Jets mit Lichtgeschwindigkeit ins All geschleudert, im Fall von PKS1441+25 Richtung Erde.

Galaxie mit großer Bandbreite

Mit dem MAGIC-Teleskop auf La Palma in Spanien beobachteten Wissenschaftler hochenergetische Gammastrahlen bei PKS 1441+25. Das Licht des Quasars erreicht die Erde nach etwa 7,6 Milliarden Jahren – die Galaxie befindet sich somit im "Mittelalter" des 13,8 Milliarden alten Universums.

"Außer PKS 1441+25 kennen wir nur eine weitere so weit entfernte aktive Galaxie, bei der Gammastrahlen zu entdecken waren", erklärt Dr. Razmik Mirzoyan, Sprecher des MAGIC-Verbundes und Forscher am Max-Planck-Institut für Physik. "Auch diese Galaxie, B0218+357, haben wir mit MAGIC entdeckt und untersucht."

Die Beobachtung von PKS 1441+25 zeigte, dass die Aktivität des Quasars hochvariabel ist: Die energiereichsten Gammastrahlen-Emissionen lagen bei 250 Gigaelektronenvolt. Diese Ausbrüche waren bis zu 100 Mal stärker als das sonst beobachtete Gammastrahlenprofil. Die Gründe für diese große Bandbreite liegen noch im Dunklen.

Allerdings konnten die Wissenschaftler beobachten, wo der Ursprung der extrem heftigen Ausbrüche liegt. "Sie entstehen viele Milliarden Kilometer vom aktiven Kern entfernt", sagt Mirzoyan, "während die anderen Emissionen viel näher am Schwarzen Loch gebildet werden".

Scheinwerfer im kosmischen Nebel

Abgesehen von seinem ungewöhnlichen Verhalten ist der Quasar in einer weiteren sehr wichtigen Hinsicht interessant. Der Kosmos ist angefüllt mit diffusem extragalaktischen Hintergrundlicht. Dabei handelt es sich um die Lichtteilchen aller Sterne und Galaxien, die je im Universum existierten. Damit birgt der kosmische Nebel wichtige Informationen über die Vergangenheit des Universums.

Da sich von unserer Milchstraße aus kaum erschließen lässt, wie dicht das Hintergrundlicht ist, nutzen Astrophysiker eine indirekte Methode. Sie messen Gammastrahlen von entfernten Galaxien. Auf ihrem Weg zur Erde werden die hochenergetischen Strahlen abgeschwächt: Wenn sie auf ein Lichtteilchen treffen, wandeln sie sich in ein Elektron und ein Positron um – und sind damit für die Beobachtung verloren. Je dichter der Dunst, umso mehr Gammastrahlen werden vom Hintergrundlicht geschluckt.

"Für die exakte Bestimmung des extragalaktischen Hintergrundlichts sind Gammastrahlen weit entfernter Objekte erforderlich“, sagt Mirzoyan. „Mit PKS 1441+25 haben wir jetzt eine Gammaquelle ‚erwischt’, die zweimal so weit entfernt ist wie bisher untersuchte Objekte. Damit haben wir unsere bisherige Rekord-Beobachtungsreichweite aus dem Jahr 2007 verdoppelt(*) und erhalten Auskunft über den Zustand des Universums vor 7,6 Milliarden Jahren.“

Neue Physik bei noch energiereicheren Gammastrahlen?

Die aktuellen Messungen stehen im Einklang mit gängigen Modellen zur Entwicklung von Sternen und Galaxien. Mit 250 Gigaelektronenvolt liegt die Gammastrahlung von PKS 1441+25 in der passenden Größenordnung.

„Spannend wäre es gewesen, wenn wir Gammastrahlen mit wesentlich höheren Energien zum Beispiel ab etwa 1.000 Gigaelektronenvolt gefunden hätten“, erläutert Mirzoyan. „Dann müssten wir unsere Modelle überdenken – oder davon ausgehen, dass wir es mit bisher unbekannten physikalischen Vorgängen zu tun haben, die dafür sorgen, dass mehr Gammastrahlen durch das kosmische Hintergrundlicht zu uns dringen.“

PKS 1441+25 im Visier: Ein Zusammenspiel verschiedener Instrumente

Entdeckt wurde die starke Gammastrahlung der aktiven Galaxie im April 2015, als der Quasar einen besonders starken Materiejet in Richtung Erde schleuderte. „Gesehen“ hat sie zunächst das LAT-Instrument des NASA-Satelliten Fermi. Dieser scannt den gesamten Nachthimmel in nur etwa drei Stunden.

Da Fermi nur den unteren Bereich des Gammastrahlenspektrums erfasst, wurde schnell das auf höhere Energien spezialisierte, erdgebundene Doppelteleskop MAGIC „zugeschaltet“. Der Ausbruch wurde später auch von den VERITAS-Teleskopen in Arizona, USA beobachtet. Insgesamt sammelte MAGIC Beobachtungsdaten über einen Zeitraum von zehn Tagen.

(*) Damals entdeckte MAGIC die Quelle 3C 279 bei einer Rotverschiebung von 0,536 (Science, 27. Juni 2008).

Publikation:
Very-high-energy rays from the universe's middle age:
detection of the z = 0:940 blazar PKS 1441+25 with MAGIC; Astrophysical Journal Letters, http://iopscience.iop.org/article/10.1088/2041-8205/815/2/L23

Weitere Informationen:

Entdeckung und Bedeutung der energiereichen Gammastrahlen von PKS 1441+25 (Video) https://youtu.be/AJh7fq7tYfgC
Pressemitteilung der NASA: http://www.nasa.gov/feature/goddard/nasas-fermi-satellite-kicks-off-a-blazar-det...
Die MAGIC-Teleskope (Video):: https://www.mpp.mpg.de/medienarchiv/extern/Videos/Forschung/MAGIC/EyesForTheExtr...
Webseite der MAGIC-Kollaboration https://magic.mpp.mpg.de/

Kontakt:

Dr. Razmik Mirzoyan
Max-Planck-Institut für Physik
+49 89 32354-328
razmik.mirzoyan@mpp.mpg.de; mirzoyan.razmik@gmail.com
https://www.mpp.mpg.de/forschung/experimental/magic/index.html

Weitere Informationen:

https://www.mpp.mpg.de/pr/medienarchiv/03_print/pressemeldungen/pressemeldungen2...
https://youtu.be/AJh7fq7tYfg
http://www.nasa.gov/feature/goddard/nasas-fermi-satellite-kicks-off-a-blazar-det...
https://www.mpp.mpg.de/medienarchiv/extern/Videos/Forschung/MAGIC/EyesForTheExtr...
https://magic.mpp.mpg.de/

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie