Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen sogenannten Rydberg-Orbit an.


Der geladene Kern eines Riesenatoms wechselwirkt mit benachbarten Atomen, während das Elektron weit entfernt den Kern vor elektrischen Störfeldern schützt.

Celina Brandes

Dadurch hält sich das angeregte Elektron bis zu 3.7µm vom Kern entfernt auf, fünfzehntausend Mal weiter als im Grundzustand. Das Quantengas wurde in einer winzig kleinen optischen Dipolfalle gehalten. Die Wolke aus vielen Tausend Atomen war damit um den Faktor drei kleiner als der Elektronenorbit.

„Die Durchführung des Experiments war für uns eine spannende Herausforderung, da Riesenatome sehr sensibel auf elektrische Störfelder reagieren“ so Kathrin Kleinbach, Doktorandin am 5. Physikalischen Institut der Universität Stuttgart.

Das Rydberg-Elektron befindet sich weit weg vom Kern und bildet zusätzlich einen Faraday’schen Käfig, so dass kleine elektrische Felder den geladenen Kern nicht beschleunigen (und damit aufheizen) können. So lässt sich die Wechselwirkung zwischen dem positiv geladenen Kern des Riesenatoms und dem Quantengas erforschen.

Damit bietet das Experiment erstmals die Möglichkeit, die Wechselwirkung zwischen neutralen Teilchen und dem geladenen Kern des Riesenatoms bei extrem kalten Temperaturen zu erforschen. Im Vergleich zu bisherigen Experimenten, welche diese Wechselwirkung untersuchen, bietet die neue experimentelle Herangehensweise eine tausendmal kältere Umgebung, weniger als ein millionstel Grad vom absoluten Temperaturnullpunkt entfernt.

Damit kommt das Forscherteam einem Temperaturbereich sehr nahe, in dem Quanteneffekte eine Rolle spielen sollten und zu exotischen bisher unerforschten Materieformen führen könnten. Die Untersuchung dieser Effekte ist für die Grundlagenforschung im Bereich der Quantenchemie und möglicher neuer Materieformen von Bedeutung.
Die Arbeit entstand im Zentrum für Integrierte Quantenwissenschaft und -technologie IQST.

Im IQST haben sich die Universitäten Ulm und Stuttgart sowie das Max-Planck-Institut für Festkörperforschung zusammengeschlossen, um aus abstrakter Quantenphysik neue technologische Ansätze zu entwickeln. Wissenschaftler und Wissenschaftlerinnen sowie Praktiker und Praktikerinnen aus den Bereichen Physik, Chemie, Biologie, Mathematik und Ingenieurwissenschaften erforschen darin die Welt der Quanten in ihrer ganzen Breite und kooperieren teilweise direkt mit der Industrie.

*Originalpublikation:
Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures: K. S. Kleinbach, F. Engel, T. Dieterle, R. Löw, T. Pfau, and F. Meinert, Phys. Rev. Lett. 120, 193401, 10 May 2018
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.193401
Populärwissenschaftlicher englischer Beitrag:
https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.120.193401

Fachlicher Kontakt:
Kathrin Kleinbach, Universität Stuttgart, 5. Physikalisches Institut, Tel.: +49 (0)711/685 67463, Mail: k.kleinbach (at) physik.uni-stuttgart.de
Pressekontakt:
Andrea Mayer-Grenu, Universität Stuttgart, Hochschulkommunikation, Tel.: +49 (0)711/685 82176, Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorhersage von Kristallisationsprozessen soll bessere Kunststoff-Bauteile möglich machen

20.06.2018 | Materialwissenschaften

Agrophotovoltaik goes global: von Chile bis Vietnam

20.06.2018 | Energie und Elektrotechnik

Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

20.06.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics