Bose-Einstein-Kondensat im Riesenatom – Universität Stuttgart untersucht exotisches Quantenobjekt

Der geladene Kern eines Riesenatoms wechselwirkt mit benachbarten Atomen, während das Elektron weit entfernt den Kern vor elektrischen Störfeldern schützt. Celina Brandes

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen sogenannten Rydberg-Orbit an.

Dadurch hält sich das angeregte Elektron bis zu 3.7µm vom Kern entfernt auf, fünfzehntausend Mal weiter als im Grundzustand. Das Quantengas wurde in einer winzig kleinen optischen Dipolfalle gehalten. Die Wolke aus vielen Tausend Atomen war damit um den Faktor drei kleiner als der Elektronenorbit.

„Die Durchführung des Experiments war für uns eine spannende Herausforderung, da Riesenatome sehr sensibel auf elektrische Störfelder reagieren“ so Kathrin Kleinbach, Doktorandin am 5. Physikalischen Institut der Universität Stuttgart.

Das Rydberg-Elektron befindet sich weit weg vom Kern und bildet zusätzlich einen Faraday’schen Käfig, so dass kleine elektrische Felder den geladenen Kern nicht beschleunigen (und damit aufheizen) können. So lässt sich die Wechselwirkung zwischen dem positiv geladenen Kern des Riesenatoms und dem Quantengas erforschen.

Damit bietet das Experiment erstmals die Möglichkeit, die Wechselwirkung zwischen neutralen Teilchen und dem geladenen Kern des Riesenatoms bei extrem kalten Temperaturen zu erforschen. Im Vergleich zu bisherigen Experimenten, welche diese Wechselwirkung untersuchen, bietet die neue experimentelle Herangehensweise eine tausendmal kältere Umgebung, weniger als ein millionstel Grad vom absoluten Temperaturnullpunkt entfernt.

Damit kommt das Forscherteam einem Temperaturbereich sehr nahe, in dem Quanteneffekte eine Rolle spielen sollten und zu exotischen bisher unerforschten Materieformen führen könnten. Die Untersuchung dieser Effekte ist für die Grundlagenforschung im Bereich der Quantenchemie und möglicher neuer Materieformen von Bedeutung.
Die Arbeit entstand im Zentrum für Integrierte Quantenwissenschaft und -technologie IQST.

Im IQST haben sich die Universitäten Ulm und Stuttgart sowie das Max-Planck-Institut für Festkörperforschung zusammengeschlossen, um aus abstrakter Quantenphysik neue technologische Ansätze zu entwickeln. Wissenschaftler und Wissenschaftlerinnen sowie Praktiker und Praktikerinnen aus den Bereichen Physik, Chemie, Biologie, Mathematik und Ingenieurwissenschaften erforschen darin die Welt der Quanten in ihrer ganzen Breite und kooperieren teilweise direkt mit der Industrie.

*Originalpublikation:
Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures: K. S. Kleinbach, F. Engel, T. Dieterle, R. Löw, T. Pfau, and F. Meinert, Phys. Rev. Lett. 120, 193401, 10 May 2018
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.193401
Populärwissenschaftlicher englischer Beitrag:
https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.120.193401

Fachlicher Kontakt:
Kathrin Kleinbach, Universität Stuttgart, 5. Physikalisches Institut, Tel.: +49 (0)711/685 67463, Mail: k.kleinbach (at) physik.uni-stuttgart.de
Pressekontakt:
Andrea Mayer-Grenu, Universität Stuttgart, Hochschulkommunikation, Tel.: +49 (0)711/685 82176, Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Media Contact

Andrea Mayer-Grenu idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-stuttgart.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Druck- und Temperaturmessung im Wälzkontakt

… unter Mischreibung dank innovativem Dünnschicht-Multisensor. Die Messung von Druck und Temperatur spielt eine entscheidende Rolle in verschiedenen technischen Anwendungen von Wälzlagern über Verzahnungen bis hin zu Dichtungen. Vor allem…

Wie Zellen die Kurve kriegen

Die Krümmung einer Oberfläche bestimmt das Bewegungsverhalten von Zellen. Sie bewegen sich bevorzugt entlang von Tälern oder Rillen, während sie Erhebungen meiden. Mit diesen Erkenntnissen unter Beteiligung des Max-Planck-Instituts für…

Herzinsuffizienz: Zwei Jahre mit Herzpflaster

Patient berichtet über Erfahrungen. Weltweit einzigartig: Patient*innen mit Herzschwäche wurde im Rahmen einer Studie der Universitätsmedizin Göttingen (UMG) und des Universitätsklinikums Schleswig-Holstein (UKSH) im Labor gezüchtetes Herzgewebe implantiert. Das sogenannte…

Partner & Förderer