Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker stellen „Super-Photon“ her

25.11.2010
Physiker der Universität Bonn haben eine völlig neue Lichtquelle hergestellt, ein so genanntes Bose-Einstein-Kondensat aus Photonen.

Bis vor kurzem hatten Experten das noch für unmöglich gehalten. Die Methode eignet sich unter Umständen zur Konstruktion neuartiger laserähnlicher Lichtquellen, die im Röntgenbereich leuchten.

Eventuell ließen sich damit unter anderem leistungsfähigere Computerchips bauen. Die Wissenschaftler berichten in der kommenden Ausgabe der Zeitschrift „Nature“ über ihre Entdeckung (doi: 10.1038/nature09567).

Wenn man Rubidiumatome sehr stark abkühlt und genügend von ihnen auf kleinem Raum konzentriert, werden sie plötzlich ununterscheidbar: Sie verhalten sich wie ein einziges riesiges „Superteilchen“. Physiker sprechen von einem Bose-Einstein-Kondensat.

Für „Lichtpartikel“, die Photonen, müsste das eigentlich auch gehen. Leider scheitert diese Idee aber an einem fundamentalen Problem: Wenn man Photonen „abkühlt“, verschwinden sie. Licht zu kühlen und gleichzeitig zu konzentrieren, schien daher bis vor einigen Monaten unmöglich. Den Bonner Physikern Jan Klärs, Julian Schmitt, Dr. Frank Vewinger und Professor Dr. Martin Weitz ist das nun dennoch gelungen - eine kleine Sensation.

Wie warm ist Licht?

Wenn man den Wolfram-Wendel einer Glühbirne erhitzt, beginnt er zu glühen - zunächst rot, dann gelb und schließlich bläulich. Man kann auf diese Weise jeder Lichtfarbe eine „Entstehungstemperatur“ zuweisen: Blaues Licht ist wärmer als rotes. Wolfram glüht aber anders als beispielsweise Eisen. Physiker eichen die Farbtemperatur daher anhand eines erdachten Modellobjekts, eines so genannten schwarzen Körpers. Wenn man diesen Körper auf 5.500 Grad erhitzen würde, hätte er etwa dieselbe Farbe wie Sonnenlicht zur Mittagszeit. Anders gesagt: Mittagslicht hat 5.500 Grad Celsius oder knapp 5.800 Kelvin (die Kelvin-Temperaturskala kennt keine negativen Werte, sondern beginnt beim absoluten Temperaturnullpunkt von -273 Grad; daher sind Kelvin-Werte immer 273 Grad höher als die entsprechenden Celsius-Werte).

Wenn man einen schwarzen Körper abkühlt, leuchtet er irgendwann gar nicht mehr im sichtbaren Bereich, sondern gibt nur noch unsichtbare infrarote Photonen ab. Gleichzeitig nimmt seine Strahlungsintensität ab: Die Menge der Photonen wird mit sinkender Temperatur immer niedriger. Das macht es so schwierig, auf die für eine Bose-Einstein-Kondensation nötige Menge kühler Photonen zu kommen.

Die Bonner Forscher haben das dennoch geschafft. Sie nutzten dazu zwei hochreflektive Spiegel, zwischen denen sie einen Lichtstrahl ständig hin- und her warfen. Zwischen den Reflexionsflächen befanden sich gelöste Farbstoff-Moleküle, mit denen die Photonen regelmäßig kollidierten. Bei diesen Kollisionen verschluckten die Moleküle die Photonen und spuckten sie danach wieder aus. „Dabei nahmen die Photonen die Temperatur der Farbstoff-Flüssigkeit an“, erklärt Professor Weitz. „Sie kühlten sich also auf Raumtemperatur ab, und zwar ohne gleichzeitig verloren zu gehen.“

Ein Kondensat aus Licht

Die Bonner Physiker erhöhten nun die Menge der Photonen zwischen den Spiegeln, indem sie die Farbstofflösung mit einem Laser anregten. So konnten sie die abgekühlten Lichtteilchen so stark konzentrieren, dass sie zu einem „Super-Photon“ kondensierten.

Dieses photonische Bose-Einstein-Kondensat ist eine völlig neue Lichtquelle mit laserähnlichen Eigenschaften. Sie bietet aber gegenüber Lasern einen entscheidenden Vorteil: „Wir können heute keine Laser herstellen, die sehr kurzwelliges Licht erzeugen - also etwa UV- oder Röntgen-Licht“, erläutert Jan Klärs. „Mit einem photonischen Bose-Einstein-Kondensat sollte das dagegen gehen.“

Diese Aussicht dürfte vor allem Chip-Designer freuen: Sie nutzen Laserlicht, um logische Schaltkreise in ihre Halbleitermaterialien zu gravieren. Wie fein diese Strukturen sein können, wird unter anderem durch die Lichtwellenlänge begrenzt: Langwellige Laser eignen sich für Feinarbeiten weniger gut als kurzwellige - das ist, als wollte man einen Brief mit einem Malerpinsel unterschreiben.

Röntgenstrahlung ist viel kurzwelliger als sichtbares Licht. Mit Röntgenlasern sollten sich daher im Prinzip auf derselben Siliziumfläche erheblich komplexere Schaltkreise unterbringen lassen. Das würde eine neue Generation von Hochleistungschips ermöglichen - und damit leistungsfähigere Computer für den Endanwender. Auch bei anderen Anwendungen wie zum Beispiel der Spektroskopie oder der Photovoltaik könnte das Verfahren nützlich sein.

Kontakt:
Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-4837 oder -4836, E-Mail: Martin.Weitz@uni-bonn.de
Jan Klärs
Telefon: 0228/73-3453, E-Mail: klaers@iap.uni-bonn.de

Frank Luerweg | Uni Bonn
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences