Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker stellen „Super-Photon“ her

25.11.2010
Physiker der Universität Bonn haben eine völlig neue Lichtquelle hergestellt, ein so genanntes Bose-Einstein-Kondensat aus Photonen.

Bis vor kurzem hatten Experten das noch für unmöglich gehalten. Die Methode eignet sich unter Umständen zur Konstruktion neuartiger laserähnlicher Lichtquellen, die im Röntgenbereich leuchten.

Eventuell ließen sich damit unter anderem leistungsfähigere Computerchips bauen. Die Wissenschaftler berichten in der kommenden Ausgabe der Zeitschrift „Nature“ über ihre Entdeckung (doi: 10.1038/nature09567).

Wenn man Rubidiumatome sehr stark abkühlt und genügend von ihnen auf kleinem Raum konzentriert, werden sie plötzlich ununterscheidbar: Sie verhalten sich wie ein einziges riesiges „Superteilchen“. Physiker sprechen von einem Bose-Einstein-Kondensat.

Für „Lichtpartikel“, die Photonen, müsste das eigentlich auch gehen. Leider scheitert diese Idee aber an einem fundamentalen Problem: Wenn man Photonen „abkühlt“, verschwinden sie. Licht zu kühlen und gleichzeitig zu konzentrieren, schien daher bis vor einigen Monaten unmöglich. Den Bonner Physikern Jan Klärs, Julian Schmitt, Dr. Frank Vewinger und Professor Dr. Martin Weitz ist das nun dennoch gelungen - eine kleine Sensation.

Wie warm ist Licht?

Wenn man den Wolfram-Wendel einer Glühbirne erhitzt, beginnt er zu glühen - zunächst rot, dann gelb und schließlich bläulich. Man kann auf diese Weise jeder Lichtfarbe eine „Entstehungstemperatur“ zuweisen: Blaues Licht ist wärmer als rotes. Wolfram glüht aber anders als beispielsweise Eisen. Physiker eichen die Farbtemperatur daher anhand eines erdachten Modellobjekts, eines so genannten schwarzen Körpers. Wenn man diesen Körper auf 5.500 Grad erhitzen würde, hätte er etwa dieselbe Farbe wie Sonnenlicht zur Mittagszeit. Anders gesagt: Mittagslicht hat 5.500 Grad Celsius oder knapp 5.800 Kelvin (die Kelvin-Temperaturskala kennt keine negativen Werte, sondern beginnt beim absoluten Temperaturnullpunkt von -273 Grad; daher sind Kelvin-Werte immer 273 Grad höher als die entsprechenden Celsius-Werte).

Wenn man einen schwarzen Körper abkühlt, leuchtet er irgendwann gar nicht mehr im sichtbaren Bereich, sondern gibt nur noch unsichtbare infrarote Photonen ab. Gleichzeitig nimmt seine Strahlungsintensität ab: Die Menge der Photonen wird mit sinkender Temperatur immer niedriger. Das macht es so schwierig, auf die für eine Bose-Einstein-Kondensation nötige Menge kühler Photonen zu kommen.

Die Bonner Forscher haben das dennoch geschafft. Sie nutzten dazu zwei hochreflektive Spiegel, zwischen denen sie einen Lichtstrahl ständig hin- und her warfen. Zwischen den Reflexionsflächen befanden sich gelöste Farbstoff-Moleküle, mit denen die Photonen regelmäßig kollidierten. Bei diesen Kollisionen verschluckten die Moleküle die Photonen und spuckten sie danach wieder aus. „Dabei nahmen die Photonen die Temperatur der Farbstoff-Flüssigkeit an“, erklärt Professor Weitz. „Sie kühlten sich also auf Raumtemperatur ab, und zwar ohne gleichzeitig verloren zu gehen.“

Ein Kondensat aus Licht

Die Bonner Physiker erhöhten nun die Menge der Photonen zwischen den Spiegeln, indem sie die Farbstofflösung mit einem Laser anregten. So konnten sie die abgekühlten Lichtteilchen so stark konzentrieren, dass sie zu einem „Super-Photon“ kondensierten.

Dieses photonische Bose-Einstein-Kondensat ist eine völlig neue Lichtquelle mit laserähnlichen Eigenschaften. Sie bietet aber gegenüber Lasern einen entscheidenden Vorteil: „Wir können heute keine Laser herstellen, die sehr kurzwelliges Licht erzeugen - also etwa UV- oder Röntgen-Licht“, erläutert Jan Klärs. „Mit einem photonischen Bose-Einstein-Kondensat sollte das dagegen gehen.“

Diese Aussicht dürfte vor allem Chip-Designer freuen: Sie nutzen Laserlicht, um logische Schaltkreise in ihre Halbleitermaterialien zu gravieren. Wie fein diese Strukturen sein können, wird unter anderem durch die Lichtwellenlänge begrenzt: Langwellige Laser eignen sich für Feinarbeiten weniger gut als kurzwellige - das ist, als wollte man einen Brief mit einem Malerpinsel unterschreiben.

Röntgenstrahlung ist viel kurzwelliger als sichtbares Licht. Mit Röntgenlasern sollten sich daher im Prinzip auf derselben Siliziumfläche erheblich komplexere Schaltkreise unterbringen lassen. Das würde eine neue Generation von Hochleistungschips ermöglichen - und damit leistungsfähigere Computer für den Endanwender. Auch bei anderen Anwendungen wie zum Beispiel der Spektroskopie oder der Photovoltaik könnte das Verfahren nützlich sein.

Kontakt:
Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-4837 oder -4836, E-Mail: Martin.Weitz@uni-bonn.de
Jan Klärs
Telefon: 0228/73-3453, E-Mail: klaers@iap.uni-bonn.de

Frank Luerweg | Uni Bonn
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individuelle Gebäudehülle aus dem Drucker

24.08.2017 | Architektur Bauwesen

Wie sich Krebszellen gegen Chemotherapeutika „immun“ machen

24.08.2017 | Biowissenschaften Chemie

"Comammox"-Bakterien: Langsam, aber super-effizient

24.08.2017 | Biowissenschaften Chemie