Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher ergründen komplizierte Kräfte in Atomkernen

20.04.2010
Bonner Wissenschaftler haben ein elementares Problem der theoretischen Physik gelöst: Sie haben die komplizierten Wechselwirkungen in einem mittelgroßen Atomkern zuverlässig berechnet.

Voraussichtlich können sie bald auch die Kerne von sehr großen, noch gar nicht gefundenen Atomen vorhersagen. Ihre Studie in Zusammenarbeit mit dem Forschungszentrum Jülich und der North Carolina State University wurde in dem Fachmagazin "Physical Review Letters" veröffentlicht.

Nach einer knappen Woche spuckte der Großrechner JUGENE am Forschungszentrum Jülich das Ergebnis aus: die Energiewerte von fünf Atomkernen. Und siehe da, die Rechenergebnisse stimmten mit den realen Werten überein. Die neue Rechenmethode des Bonner Physikers Professor Dr. Ulf-G. Meißner und seiner Kollegen hat somit die komplexen Wechselwirkungen innerhalb der Atomkerne richtig erfasst. Fünf mittelgroße Kerne hatten die Forscher unter die Lupe genommen, darunter das Gas Helium, das Metall Lithium und den universell vorkommenden Kohlenstoff.

"Wir sind ein altbekanntes Problem in der Physik angegangen, nämlich: Wie kann man den Aufbau von Atomkernen verstehen?" erläutert Professor Meißner. Atomkerne sind faszinierende Gebilde; in ihnen sind sehr viele kleine Bausteine auf aller engstem Raum zusammengepresst. Die Kernbausteine, Protonen und Neutronen, wechselwirken auf vielfältige Weise miteinander und untereinander: Zum Teil stoßen sie sich ab, hauptsächlich herrscht zwischen ihnen aber eine ungeheure Anziehungskraft, die "starke Wechselwirkung". Und diese Kraft ist anders als alle anderen Kräfte, die Physiker kennen.

"Die starke Wechselwirkung lässt sich nicht über normale physikalische Modelle beschreiben", sagt Professor Meißner. "Sie ist einfach zu kompliziert." Daher ließen sich größere Atomkerne bisher nicht zuverlässig berechnen, denn je mehr Bausteine desto komplexer die Kräfte im Inneren der Kerne. Vergleichbar ist das mit einem Straßenbahnnetz: Je mehr Linien in der Stadt verkehren, desto mehr Kreuzungspunkte gibt es und desto schwieriger ist es auch, die Fahrpläne zu erstellen.

Neues Verfahren, um Atomkerne zu berechnen

Die Forscher haben jetzt erstmals zwei Methoden miteinander vereint und so ein neues Verfahren entwickelt, um Atomkerne zu berechnen. Sie gingen von einer recht jungen physikalischen Theorie aus, die die Kräfte zwischen zwei und drei Bausteinen beschreibt. Viele dieser Bausteine packten die Forscher dann virtuell im Computer zu größeren Kernen zusammen und ließen den Rechner die Gesamtheit aller Wechselwirkungen berechnen. Der Kern von Kohlenstoff setzt sich beispielsweise aus 12 Bausteinen zusammen.

Ein gewöhnlicher Computer schafft diese Rechenaufgabe nicht mehr. Daher haben Professor Meißner und seine Kollegen den Großrechner JUGENE am Forschungszentrum Jülich mit ihrem Modell gefüttert; der errechnete die Bindungsenergien der fünf Atomkerne. "Dass die Ergebnisse mit den bekannten Energiewerten übereinstimmen, zeigt, dass unser neues Verfahren funktioniert", sagt der Physiker.

Endziel ist es, noch viel größere Kerne zu berechnen ? Kerne, die so komplex sind, dass sie in der Natur gar nicht existieren oder so schnell zerfallen, dass sie nicht beobachtet werden können. Atomkerne mit mehr als einigen 100 Bausteinen sind so instabil, dass sie auseinander fliegen. Forscher versuchen weltweit, solche supergroßen Kerne künstlich zu erzeugen und ihre Eigenschaften zu untersuchen. Das neue Rechenverfahren der Bonner Forscher wird ihnen dabei helfen: Denn zu wissen, wonach man sucht, vereinfacht die Suche erheblich. "Mit unserer Methode sollten sich auch sehr instabile Kerne präzise berechnen lassen", hofft Prof. Meißner, "und somit auch deren Eigenschaften vorhersagen lassen. Wir können dann sagen, ob ein beliebiger Atomkern stabil ist, wie groß er ist und wie er sich verhält."

Prof. Meißner und seine Kollegen planen fest, solche supergroßen Kerne bald zu berechnen. "Allerdings wird es noch ein paar Jahre dauern, bis unser Verfahren genügend verfeinert ist", sagt er.

Die Studie erschien am 8. April in dem Fachmagazin "Physical Review Letters": E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Lattice effective field theory calculations for A = 3,4,6,12 nuclei, Physical Review Letters, 2010.

Kontakt:
Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn
Telefon: 0228/73-2365
E-Mail: meissner@itkp.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atomkern Baustein Energiewert JUGENE Kohlenstoff Physik Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie