Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher bauen eine ultrakleine Quanten-Ratsche

27.11.2009
Manche kennen sie von Gewerkschaftskundgebungen, andere aus dem Spielzeugladen: Die klinkenförmigen Ratschen, die - hin- und hergeschwenkt - ein schnarrendes Geräusch von sich geben.

Physiker der Universität Bonn haben nun eine Art "Mini-Ratsche" hergestellt, die vollständig quantenmechanisch funktioniert. Die Ergebnisse des Experiments erscheinen am kommenden Freitag im Wissenschafts-Magazin Science. Sie dokumentieren, wie bei der Herstellung winziger Maschinen die Gesetze der Quantenmechanik zu wirken beginnen.

Ratschen sind Maschinen, die aus einer zufälligen Rüttelbewegung eine gerichtete Bewegung erzeugen. In klassischen Spielzeugratschen ist dazu eine mechanische Rücklaufsperre eingebaut. Sie sorgt einerseits dafür, dass sich beim Hin- und Herschwenken der Kopf des Geräts nur in eine Richtung dreht. Gleichzeitig erzeugt sie dabei das charakteristische Schnarren, das man von Demos oder Kundgebungen kennt.

Die Physiker vom Bonner Institut für Angewandte Physik haben nun eine extrem kleine Ratsche konstruiert, die vollständig quantenmechanisch funktioniert. Sie erbrachten damit erstmals den Beweis, dass die Konstruktion einer solchen reibungsfreien Quantenratsche überhaupt möglich ist. Erste theoretische Überlegungen, dass so etwas funktionieren müsste, wurden bereits vor zehn Jahren angestellt.

Wellpappe aus Licht

Die Bonner Physiker stellten für ihr Experiment zunächst ein so genanntes Bose-Einstein-Kondensat her. Darunter verstehen Physiker große Klumpen von Atomen, die sich alle im selben quantenphysikalischen Zustand befinden. "Unser Bose-Einstein-Kondensat bestand aus rund 100.000 Rubidium-Atomen", erklärt der Bonner Physiker Professor Dr. Martin Weitz.

Nun luden die Forscher das Atom-Agglomerat auf eine Art "Wellpappe" aus Licht. Die Wellen auf dieser Pappe waren nicht symmetrisch, sondern sägezahnförmig verzerrt: Die linke Flanke war stets steiler als die rechte. Über eine derartige räumliche Asymmetrie sorgt beispielsweise auch die Sperrfeder in einer Spielzeugratsche dafür, dass diese sich nur in eine Richtung dreht.

Die Bonner Physiker rüttelten nun gewissermaßen an ihrer Wellpappe, und das in die eine Richtung stets ein wenig schneller als in die andere. "Zur räumlichen Asymmetrie der Wellpappe trat so die zeitliche der Rüttelbewegung", erklärt Weitz. "Unter diesen Bedingungen setzte sich unser Rubidium-Haufen in Bewegung. Anders als bei einer Spielzeugratsche waren aber nicht die Reibungkräfte für diese Bewegung verantwortlich, sondern einzig und allein quantenmechanische Effekte."

Das Bonner Experiment beweist erstmals, dass dieses theoretisch vorhergesagte Phänomen auch tatsächlich auftritt. "In ferner Zukunft gewinnt unsere Beobachtung aber vielleicht auch praktische Bedeutung", betont Weitz. "Sie zeigt nämlich, dass bei der Konstruktion von atomaren Motoren quantenmechanische Effekte auftreten können, die wir aus unserer makroskopischen Welt nicht kennen."

Kontakt:
Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-4837 oder -4836
E-Mail: Martin.Weitz@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie