Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Astrophysiker klären Rätsel um die Entstehung von Planetensystemen auf

19.08.2011
Bei der Geburt von Planetensystemen geht es stürmischer zu, als gedacht.

Zu diesem Ergebnis kommen Astrophysiker der Universität Bonn zusammen mit englischen Kollegen der Universitäten Sheffield und Cardiff. Die Forscher konnten zeigen, dass Planeten bei einem Treffen von zwei Sternenwolken entstehen: Offenbar geraten die Wolken, die die Sterne umgeben, dabei in einen Strudel aus Gas und Staub. Das Ergebnis: ein Planetensystem mit einer schiefen oder sogar entgegen gesetzten Umlaufbahn.


Das Bild zeigt den Moment, in dem der Stern mit der protoplanetaren Scheibe Gas aus der "target cloud" abzieht und dieses in Form eines Rings um sich herum ansammelt. Quelle: Ingo Thies, AIfA/UniBonn

Die Erde dreht sich um die Sonne, und zwar im gleichen Drehsinn, wie die Sonne um sich selbst rotiert – zu dieser Erkenntnis war bereits Galileo gelangt. Eine Forschergruppe um Astrophysiker Professor Dr. Pavel Kroupa von der Universität Bonn hat nun Planeten außerhalb unseres Sonnensystems untersucht, die dieser Gesetzmäßigkeit völlig widersprechen: Die Wissenschaftler nutzten Daten zu Himmelskörpern, die ihren Mutterstern auf schiefen oder elliptischen Bahnen umkreisen. Einige bewegen sich sogar entgegengesetzt zu dessen Eigenrotation.

Um diese Ungereimtheiten zu klären, haben die Bonner Forscher mit ihren englischen Kollegen ein neues Modell der Planetenentstehung entwickelt. Computersimulationen, die Dr. Ingo Thies durchgeführt hat, zeigen, dass ein neues Planetensystem aus einem Zusammenstoß zweier Sternenwolken entsteht: Wenn eine Sternenwolke in die Umlaufbahn eines anderen Sterns hineingelangt, beginnt ein stürmischer Tanz aus Staub und Gas. Solche Wechselwirkungen zwischen Geschwistersternen dürften eher die Regel als die Ausnahme sein, weil Sterne üblicherweise in engen Sternhaufen entstehen.

Ein Stern als kosmischer Staubsauger

Der eine Stern zieht wie ein kosmischer Staubsauger massenweise Gas aus der Wolke des anderen Sterns in seine eigene Umlaufbahn. Das Gas strömt so in zufälliger Richtung auf die bereits vorhandene Umlaufbahn aus Gas und Staub ein und dreht diese aus ihrer Richtung. „Im Extremfall können Umlaufbahnen sogar ganz ihren Drehsinn wechseln und in die andere Richtung kreisen“, erklärt Prof. Dr. Pavel Kroupa.

Durch die fremden Gasströme werde der innere Bereich der Wolke zusammengedrängt, was die Verklumpung der Staubwolken zu Planeten beschleunigt. Außerdem gebe es Planeten, deren Umlaufbahnen so stark geneigt seien, dass sie das ganze System instabil machten: „Die leichten Planeten werden dadurch nach und nach aus dem System geschleudert, während die schwereren Planeten auf engere Bahnen gedrängt werden“, erklärt Dr. Thies.

Mögliches Rendezvous unseres Sonnensystems

Diese neue Theorie zur Planetenentstehung könne Fragen in der Astrophysik beantworten, die das klassische Model offen ließ, so die Forscher. Bisher gingen Astronomen davon aus, dass Planeten in einer sich zusammenziehenden rotierenden Wolke entstehen, in dessen Zentrum sich ein junger Stern aufhält. Der Staub und das Gas, aus dem die Wolken bestehen, verklumpen zu vielen kreisrunden Bällen – den Planeten. Diese kreisen dann um den Stern, wie auch unsere Erde die Sonne umkreist: Alle schön geordnet in derselben Ebene und im gleichen Drehsinn, wie der Stern um sich selbst rotiert.

Doch selbst die Ebene unseres Sonnensystems ist etwa sieben Grad gegenüber dem Sonnenäquator geneigt. Daher sei ein frühes Rendezvous mit der Gaswolke eines anderen Sterns dafür durchaus eine plausible, wenn nicht sogar die einfachste Erklärung für die schiefen Planetenbahnen, meint Dr. Ingo Thies: „Zu unserem Glück verlief dieses Treffen jedoch glimpflich, so dass die Erde heute in geordneten Bahnen ihre Kreise zieht.“

Ingo Thies, Pavel Kroupa, Simon P. Goodwin, Dimitris Stamatellos, Anthony P. Whitworth: A natural formation scenario for misaligned and short-period eccentric extrasolar planets, Monthly Notices of the Royal Astronomical Society (MNRAS)

Link zum Preprint: http://arxiv.org/abs/1107.2113

Kontakt:

Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie der Universität Bonn
Tel. 0228/73-6140 und 0177/9566127
E-Mail: pavel@astro.uni-bonn.de
Dr. Ingo Thies
Argelander-Institut für Astronomie der Universität Bonn
Tel. 0228/73-3659
E-Mail: ithies@astro.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://arxiv.org/abs/1107.2113
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik