Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Blitz: Mikrowellen-Plasmastrahler kommt in der Medizin zum Einsatz

25.03.2010
Prof. Dr. Holger Heuermann vom Fachbereich Elektrotechnik und Informationstechnik der FH Aachen hat mit seinem Team einen Plasmastrahler für die Wund- und Hautbehandlung entwickelt. Schaltet man das Gerät ein, tritt an der Spitze eine Flamme aus - allerdings handelt es sich nicht um eine normale Flamme, sondern um eine Ionenwolke. Diese wird benutzt, um Keime, Bakterien, Viren und Sporen wirkungsvoll zu vernichten. Im Gegensatz zu herkömmlichen Geräten dieser Art kann es mit Luft statt mit Edelgasen betrieben werden. Der Plasmastrahler könnte schon in kurzer Zeit Marktreife erlangen.
Wer den Begriff Mikrowelle hört, denkt erst einmal an den Mikrowellenherd in der Küche. Aber auch bei Mobilfunk, Radar oder Satellitenfernsehen kommen Mikrowellen zum Einsatz. In der Physik ist dies ein Sammelbegriff für elektromagnetische Wellen, die eine Wellenlänge zwischen einem Millimeter und einem Meter haben.
Prof. Dr. Holger Heuermann vom Fachbereich Elektrotechnik und Informationstechnik der FH Aachen entwickelt mit seinem Team Technologien, durch die Mikrowellen auch in anderen Anwendungsbereichen eingesetzt werden können. Er ist sehr erfolgreich bei der Generierung von Mikrowellenplasmen für Anwendungen wie Zündkerzen und Lampen (etwa Beamerlampen oder Energiesparlampen). Jetzt hat er gemeinsam mit dem Diplomanden Martin Schmitt ein neues Projekt entwickelt: Hierbei handelt es sich um einen Plasmastrahler für die Wund- und Hautbehandlung. Mit dem Begriff Plasma bezeichnet man in der Physik ein Gas, das teilweise oder vollständig aus freien Ladungsträgern, also Ionen oder Elektronen, besteht. 99 Prozent der sichtbaren Materie im Universum besteht aus Plasma. Natürliche Plasmen auf der Erde findet man etwa in Blitzen, auch Flammen sind plasmaähnlich. Beim Mikrowellenplasma erfolgt die Gasentladung, die zur Plasma-Erzeugung benötigt wird, durch Mikrowellen.
Der Plasmastrahler sieht auf den ersten Blick unscheinbar aus, etwa wie eine Mischung aus einem Senklot und einem Stift. Er ist zwölf Zentimeter lang, hat einen Durchmesser von weniger als zwei Zentimetern und ist mit Stahl ummantelt. Schaltet man das Gerät ein, tritt an der Spitze eine weiß-violette Flamme aus - allerdings handelt es sich nicht um eine normale Flamme, sondern um eine Ionenwolke. Diese wird benutzt, um Keime, Bakterien, Viren und Sporen wirkungsvoll - und für den Patienten schmerzfrei - zu beseitigen. Hierbei dringt das ionisierte Gas selbst in feinste Geweberitzen ein, die sonst kaum zu erreichen sind, und sorgt somit für eine gründliche Desinfektion von Wunden. Außerdem kann die Plasmabehandlung Wachstums- und Regenerationsprozesse anregen, was die Wundheilung beschleunigt. Neben der Behandlung von Hautkrankheiten ist auch ein Einsatz in der ästhetischen Medizin vorstellbar, beispielsweise durch die Entfernung von Pigmentflecken und die Glättung von Narben und Hautfalten. Ein weiterer großer Vorteil ist, dass keine Allergien und Unverträglichkeiten bei der Plasmabehandlung der Haut auftreten.
Der Plasmastrahler von Prof. Heuermann funktioniert mit normaler Umgebungsluft. Weder spezielle Prozessgase noch Hochspannungen sind notwendig. Er ist sehr kostengünstig herstellbar und nahezu produktionsreif. Gesucht werden derzeit noch Partner aus Industrie und Forschung, die das nötige medizinische Know-how mitbringen.

Aufgrund der Komplexität der Thematik war der Plasmaphysik lange Zeit eine exotische Nische in der Welt der Technik beschieden. Das zunehmende Verständnis der Vorgänge in diesem Bereich sorgte in den letzten Jahren für einen Aufschwung dieser Technologie. Das Marktvolumen von Produkten, die durch die Plasmatechnologie möglich werden, wird weltweit auf etwa 500 Milliarden Euro pro Jahr geschätzt.

Kontakt:
FH Aachen
Fachbereich Elektrotechnik und Informationstechnik
Prof. Dr. Holger Heuermann
Lehrgebiet Hoch- und Höchstfrequenztechnik
T +49. 241. 6009 52108
heuermann@fh-aachen.de

| idw
Weitere Informationen:
http://www.fh-aachen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie