Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blicke in die Kinderstube unseres Sonnensystems

16.02.2010
Astro- und Festkörperphysiker der Universität Jena erforschen, wie Planeten entstehen

Ist unser Sonnensystem ein ganz "normales" oder weist es im Vergleich mit anderen ungewöhnliche Eigenschaften auf? Dieser Frage geht die Deutsche Forschungsgemeinschaft (DFG) bei ihrem Schwerpunktprogramm "The first 10 Million years of the solar system" nach, das im vorigen Jahr gestartet wurde.

Einer Wissenschaftlergruppe der Friedrich-Schiller-Universität Jena ist es jetzt gelungen, daraus Drittmittel in Höhe von etwa 450.000 Euro einzuwerben. Das Geld sichert die Beteiligung Jenaer Wissenschaftler an diesem DFG-Schwerpunktprogramm für zwei Jahre. Der Startschuss für die Arbeit fällt in diesen Tagen.

"Beteiligt sind die Astrophysiker mit der Beobachtergruppe und der Labor-Astrophysik sowie das Institut für Festkörperphysik", sagt Prof. Dr. Ralph Neuhäuser, der den Lehrstuhl für Astrophysik an der Friedrich-Schiller-Universität innehat. Insgesamt können fünf Wissenschaftler für zunächst zwei Jahre eingestellt werden, außerdem wurden Reise- und Sachmittel bewilligt. "Darunter sind gut 100.000 Euro für Arbeiten mit unserem Teleskop in Großschwabhausen, für das wir erstmals DFG-Drittmittel einwerben konnten", betont Neuhäuser. Dieser Erfolg freue ihn besonders, weil die Sternwarte in Großschwabhausen in den letzten Jahren saniert und restauriert wurde. Ein lohnendes Unterfangen, wie sich jetzt gezeigt hat.

Für ihr Forschungsvorhaben beschreiten die Jenaer Wissenschaftler zwei Wege: Sie beobachten zum einen "junge" Sonnensysteme - das sind solche, die jünger als zehn Millionen Jahre alt sind. Und sie untersuchen zum anderen Material aus der Frühzeit unseres Sonnensystems. In den Fokus der Labor-Astrophysiker rücken deshalb Asteroiden und Kometen. "Meteorite enthalten Material aus dem Weltraum, das so alt ist wie unser Sonnensystem", sagt Dr. Harald Mutschke. Der Astrophysiker wird zusammen mit einem neuen Doktoranden Proben solcher 4,56 Milliarden Jahre alten Materialien im Labor untersuchen. Analysiert werden beispielsweise die optischen Eigenschaften der enthaltenen Minerale bei Temperaturen bis zu 800 Grad Celsius. "Das entspricht den Temperaturen, wie sie in den Sonnensystemen herrschen, die unsere Kollegen beobachten", sagt Mutschke. Aus dem Vergleich erhoffen sich die Wissenschaftler neue Einblicke in die Frühzeit unseres Sonnensystems.

Ralph Neuhäuser sagt, die "jungen" Sonnensysteme seien zwischen 100 und 400 Lichtjahre von der Erde entfernt, also relativ enge Nachbarn der Erde. Neben den eigenen Beobachtungen in Großschwabhausen werden Daten an der europäischen Südsternwarte in Chile aufgenommen und ausgewertet. Die Universität Jena kooperiert bei diesen Projekten mit den Universitäten in Rostock, Kiel und Hamburg.

Dr. Cornelia Jäger vom Institut für Festkörperphysik der Jenaer Universität untersucht sogenannte GEMS, das sind häufige, isotopisch abweichende Partikel in Meteoriten. GEMS steht für Glas mit eingebetteten Metall- und Sulfidpartikeln. Es wird vermutet, dass diese GEMS älter sind als unser Sonnensystem - ein Beweis steht indes noch aus. "Wir wollen im Labor mögliche kosmische Bildungsmechanismen von GEMS simulieren", sagt Dr. Jäger. Die dafür im Labor hergestellten Silikate entsprechen in ihrer chemischen Zusammensetzung annähernd den zirkumstellaren Silikaten. Sie werden im Labor den möglichen kosmischen Szenarios ausgesetzt. Cornelia Jäger weiß, dass diese Magnesium-Eisen-Silikate zu den häufigsten kosmischen Staubkomponenten gehören. Sie werden in den sogenannten zirkumstellaren Hüllen um entwickelte Sterne gebildet und mit dem Sonnenwind dieser Sterne in das interstellare Medium transportiert. Dort können sie sich unter energiereicher UV- und Ionenbestrahlung verändern. Später können diese Staubpartikel wieder in sogenannte Molekülwolken eingebunden werden, die dann Orte für neue Sternentstehung und damit Orte für die Bildung planetarischer Scheiben sind. Die Jenaer Forscher setzen ihre im Labor erzeugten Proben Ionen energiereicher Strahlung aus. Danach werden die Silikate untersucht, um ihre Veränderungen zu verfolgen. "Unsere Ergebnisse sollen die Beziehungen zwischen zirkumstellaren, interstellaren und primitiven Silikaten im Sonnennebel dokumentieren. Und sie werden dazu beitragen, die Natur der Festkörpermaterialien zu erfassen, die am Anfang der Planetenentstehung stehen", sagt Jäger.

Zusammengefasst lässt sich sagen, dass die Jenaer Wissenschaftler einen Blick in die Kinderstube unseres Sonnensystems werfen werden.

Kontakt:
Prof. Dr. Ralph Neuhäuser / Dr. Harald Mutschke / Dr. Cornelia Jäger
Astrophysikalisches Institut mit Sternwarte der Friedrich-Schiller-Universität Jena
Schillergässchen 2-3, 07745 Jena
Tel.: 03641-947500 / 947533 / 947354
E-Mail: rne[at]astro.uni-jena.de / mutschke[at]astro.uni-jena.de / conny[at]astro.uni-jena.de

Stephan Laudien | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie