Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BL Lacertae - die heißeste Feuerstelle im All

26.01.2016

Im Zentrum der 900 Millionen Lichtjahren entfernten aktiven Galaxie BL Lacertae lauert ein schwarzes Loch. Aus seiner unmittelbaren Umgebung wird Radiostrahlung ausgesendet. Ihr galt jetzt die Beobachtung eines Verbunds aus mehreren Teleskopen; das Weltraumobservatorium Spektr-R war ebenso dabei wie die 100-Meter-Antenne Effelsberg sowie 14 weitere über die ganze Erde verteilte Teleskope. Dabei haben Forscher alle gemessenen Signale an einem Spezialrechner (Korrelator) im Bonner Max-Planck-Institut für Radioastronomie miteinander verbunden. Auf diese Weise entstand ein virtuelles Teleskop von achtfachem Erddurchmesser – und das bisher schärfste Bild in der Astronomie.

Seit 1974 werden im Zuge der “Very Long Baseline Interferometrie” (VLBI) gleichzeitig mit unterschiedlichen über die ganze Erde verteilten Radioteleskopen gemessene Signale von Himmelsobjekten miteinander kombiniert.


Radiobild von BL Lac bei 1,3 cm Wellenlänge. Die elliptische Umlaufbahn des Weltraum-Radioteleskops führt zu einer ausgeprägten Richtungsabhängigkeit der Winkelauflösung.

nach Vorlage aus J.L. Gomez et al., The Astrophysical Journal


RadioAstron-Bild von BL Lac im Vergleich zur Oortschen Kometenwolke und zum nächsten Nachbarstern, Alpha Centauri, gesehen aus 900 Millionen Lichtjahren Entfernung.

MPIfR/A. Lobanov

Dadurch erhält man ein virtuelles Radioteleskop von der Größe des maximalen Abstands zwischen den beteiligten Einzelteleskopen und kann so eine bisher unerreichte Schärfe in den resultierenden Radiobildern erzeugen, die sogar die Winkelauflösung des Weltraumteleskops „Hubble“ im sichtbaren Licht um mehr als das 1000fache übertrifft.

Ein internationales Forschungsteam hat nun durch die Verbindung von 15 bodengebundenen Radioteleskopen mit dem 10m-Weltraumteleskop Spektr-R der vom „Astro Space Center“ in Moskau geleiteten RadioAstron-Mission alle Rekorde gebrochen.

Durch die Teilnahme des 100-m-Radioteleskops Effelsberg mit seiner großen Sammelfläche wird das Projekt außerordentlich empfindlich für den Nachweis von extrem schwacher kosmischer Radiostrahlung. Die spezielle Analyse (oder „Korrelation“) zur Verbindung der Radiomessungen von einzelnen Teleskopen zu einem virtuellen Riesenteleskop wurde dabei am Korrelator des Max-Planck-Instituts für Radioastronomie in Bonn durchgeführt.

Die Untersuchung von BL Lacertae (BL Lac) führt zu neuen Erkenntnissen über die Natur von aktiven Galaxien, bei denen ein extrem massereiches Schwarzes Loch im Zentrum Materie verschluckt. Im Zuge dieses Vorgangs werden hochenergetische Teilchen entlang von Magnetfeldern bis fast auf Lichtgeschwindigkeit beschleunigt und in Form zweier stark gebündelter „Jets“ in entgegengesetzten Richtungen hinausgeschossen.

Bei entsprechender Geometrie wie bei BL Lac erscheint die Strahlung des Jets zum Beobachter hin viel heller, während die des entgegengesetzten Jets oft unter der Nachweisgrenze liegt. BL Lac liegt in Richtung des Sternbilds „Lacerta“ (die Eidechse) in einer Entfernung von rund 900 Millionen Lichtjahren.

Die Beobachtung in Radiowellenlängen ist sehr wichtig für die Erforschung der Jets, da bei der fast lichtschnellen Bewegung von hochenergetischen Elektronen in Magnetfeldern Radiostrahlung erzeugt wird. Aber die meisten aktiven Galaxien mit ausgeprägten Jets liegen in Entfernungen von mehreren Milliarden Lichtjahren, so dass die Jets eine extrem geringe Ausdehnung am Himmel zeigen. Daher werden Messungen mit höchster Winkelauflösung erforderlich, um die Jets im Detail zu erfassen und Phänomene wie Stoßwellen oder Turbulenz zu untersuchen, von denen es abhängt, wieviel Strahlung dabei jeweils freigesetzt wird.

„Die erstmalige Verbindung von bodengebundenen Radioteleskopen mit dem Weltraumteleskop des RadioAstron-Projekts bei höchster Winkelauflösung hat es uns möglich gemacht, mit einem virtuellen Radioteleskop von achtfachem Erddurchmesser eine Winkelauflösung von nur etwa 20 Mikro-Bogensekunden zu erreichen“, sagt José L. Gómez vom „Instituto de Astrofísica de Andalucía-CSIC“, der Leiter des Forschungsteams.

Von der Erde aus gesehen, entsprechen 20 Mikro-Bogensekunden der Größe einer Zwei-Euro-Münze auf dem Mond. Mit derart hoher Winkelauflösung lässt sich die Kernregion von BL Lac in vorher nicht erreichter Genauigkeit untersuchen. Das Zentralobjekt dieser Galaxie ist ein supermassereiches Schwarzes Loch mit 200 Millionen mal der Masse unserer Sonne.

Die Kernregionen aktiver Galaxien (Active galactic nuclei, AGN) stellen die energiereichsten Objekte überhaupt im Kosmos dar, angetrieben jeweils durch ein extrem massereiches Schwarzes Loch im Zentrum. Die Anreicherung von Materie in Richtung des Zentralobjekts (Akkretion) führt zur Entstehung einer Akkretionsscheibe, die das Schwarze Loch in extrem geringem Abstand umkreist, sowie zweier Materiejets, in denen fast auf Lichtgeschwindigkeit beschleunigte Teilchen in entgegengesetzten Richtungen jeweils senkrecht zur Scheibe herausgeschossen werden.

„Die vorher nicht erreichte Winkelauflösung, die uns RadioAstron liefert, ermöglicht einen einzigartigen Blick in die innerste Region der Galaxien, wo der größte Teil der Energie erzeugt wird“, bemerkt Yuri Kovalev vom „Astro Space Center“, Projektwissenschaftler für RadioAstron und ebenfalls Mitglied des BL-Lac-Forschungsteams.

Die gängigen Modellannahmen für AGN besagen, dass aufgrund der Rotation des zentralen Schwarzen Lochs und der umgebenden Akkretionsscheibe magnetische Feldlinien spiralförmig verbogen werden. Ein derart „aufgerolltes“ Magnetfeld begrenzt einen Jet zu einem sehr engen Strahl und beschleunigt die Bewegung der darin enthaltenen Teilchen. Ein solches Modell wird durch die neuen Beobachtungen von BL Lac bestätigt; sie zeigen ein ausgedehntes spiralförmiges Magnetfeld in einem der Jets.

Das mit RadioAstron erhaltene Bild zeigt auch eine ungewöhnlich hohe Intensität der beobachteten Strahlung am oberen Ende des Jets von BL Lac, wie es so noch in keinem anderen AGN beobachtet werden konnte. Das bringt die beteiligten Forscher zu der Frage, ob lange bewährte Annahmen darüber, wie die Radiostrahlung in den Jets erzeugt wird, überhaupt noch gültig sind.

“In BL Lac blicken wir sozusagen in die heißeste bisher entdeckte kosmische Feuerstelle, in der Materie extrem effektiv in Energie umgesetzt wird. Es wären Temperaturen von weit mehr als einer Billion Grad erforderlich, wenn wir das hier auf der Erde nachmachen wollten“, sagt der ebenfalls am Forschungsprojekt beteiligte Andrei Lobanov vom Max-Planck-Institut für Radioastronomie.

“Unser aktuelles Verständnis darüber, wie Strahlung in den Zentren aktiver Galaxien
erzeugt wird, liefert einen eindeutigen Grenzwert für die Stärke des Radiosignals, das über einen längeren Zeitraum in der Kernregion erzeugt werden kann. Die extrem hohe Intensität des in BL Lac beobachteten Signals überschreitet diesen Grenzwert. Entweder sind die Geschwindigkeiten im Jet noch viel näher an der Lichtgeschwindigkeit als bisher von uns angenommen, oder wir kommen nicht umhin, unsere theoretischen Modelle zu ändern“, schließt José L. Gómez.


Das Projekt RadioAstron wird vom “Astro Space Center” des Lebedev-Physikinstituts der russischen Akademie der Wissenschaften zusammen mit der “Lavochkin Association” im Auftrag der russischen Raumfahrtagentur geleitet, in Zusammenarbeit mit Partnerorganisationen in Russland und weiteren Ländern.

Die Spektr-R Antenne von RadioAstron befindet sich auf einer elliptischen Umlaufbahn um die Erde, und erreicht im erdfernsten Punkt (Apogäum) einen maximalen Abstand von 350.000 km, entsprechend dem 27fachen Durchmessers der Erde.

Das europäische VLBI-Netzwerk (EVN) ist ein gemeinsames Projekt von radioastronomischen Forschungsinstituten in Europa, Afrika, Asien und Nordamerika.
Das vorliegende Forschungsprojekt basiert zum Teil auf Beobachtungen mit dem 100-m-Radioteleskop des Max-Planck-Instituts für Radioastronomie (MPIfR) bei Bad Münstereifel-Effelsberg.

Das “Very Long Baseline Array” (VLBA) ist eine Forschungsanlage des „National Radio Astronomy Observatory” (NRAO), einer Einrichtung der “National Science Foundation” (NSF) und wird von den „Associated Universities Inc.“ (AUI) betrieben.
Das Forschungsprojekt basiert auf radioastronomischen Beobachtungen, deren Auswertung an einem Spezialrechner („Korrelator“) im MPIfR in Bonn erfolgte. Der Korrelator wird gemeinsam vom MPIfR und vom Bundesamt für Kartographie und Geodäsie (BKG) betrieben.

Das Forscherteam umfasst José L. Gómez, den Erstautor, und Pablo Galindo, beide vom Instituto de Astrofisica de Andalucia-CSIC, Granada, Spanien, Andrei P. Lobanov, Gabriele Bruni, Uwe Bach und James Anderson vom MPIfR Bonn, Yuri Y. Kovalev, Kirill V. Sokolovsky, Nikolay S. Kardashev, und Mikhail M. Lisakov vom Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Moskau, Russland, Alan P. Marscher und Svetlana G. Jorstad vom Institute for Astrophysical Research, Boston University, Massachusetts, USA und Yosuke Mizuno vom Institut für Theoretische Physik der Universität Frankfurt..

Originalveröffentlichung:

J. L. Gómez et al. "Probing the innermost regions of AGN jets and their magnetic fields with Radioastron. I. Imaging BL Lacertae at 21 microarcsecond resolution". 2016, The Astrophysical Journal, Volume 817, Issue 2 (article 96) DOI: 10.3847/0004-637X/817/2/96

http://iopscience.iop.org/article/10.3847/0004-637X/817/2/96

Kontakt:

Dr. Andrei Lobanov,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-191
E-mail: alobanov@mpifr-bonn.mpg.de

Prof. Dr. Anton Zensus
Direktor und Leiter der Forschungsabteilung „Radioastronomie/VLBI“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-378
E-mail: azensus@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2016/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie
Weitere Informationen:
http://www.mpifr-bonn.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie