Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Schwarmbildung in Nanosystemen

19.08.2015

Prinzipien der Selbstorganisation von Biomolekülen: Fadenförmige Filamente zeigen Phasen synchroner Bewegung. Münchner Physiker haben neue Erkenntnisse darüber, was die gemeinsame Ausrichtung antreibt.

Aus vielen Bausteinen bestehende, lebende Materie hat bisweilen außergewöhnliche Fähigkeiten, sich selbst zu organisieren und kollektive Bewegungen auszuführen. Das funktioniert bei einem Vogelschwarm im großen Maßstab ähnlich wie bei sich gemeinsam bewegenden Gruppen von Bakterien oder Zellen. Physiker interessieren sich für die zugrunde liegenden theoretischen Mechanismen hinter solch geordneten Strukturen und Bewegungen.


Foto: Matthias Krüttgen / Fotolia.com

Quelle: http://www.uni-muenchen.de/forschung/news/2015/frey_mikrofilamente.html

So wollen sie die makroskopischen Phänomene besser verstehen lernen. Dr. Christoph Weber und Professor Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik, von der LMU untersuchten deshalb gemeinsam mit ihren Kollegen Dr. Ryo Suzuki und Professor Andreas Bausch von der Technischen Universität München ein Modellsystem aus fadenförmigen Aktin-Molekülen.

Solche Mikrofilamente sind beteiligt an der aktiven Bewegung von Zellen und an intrazellulären Transportvorgängen. Die Filamente ließen sich im Experiment von auf einem Untergrund aufgeklebten molekularen Motoren bewegen.

Die Physiker konnten so studieren, wie sich einzelne Filamente verbiegen, was passiert wenn zwei Filamente zusammenstoßen, und unter welchen Bedingungen sich die Filamente kollektiv ausrichten. Davon berichten sie in aktuellen Arbeiten in den Fachblättern Nature Physics und PNAS.

Gemäß der bisher gängigen Theorie galt vorwiegend die Brown´sche Wärmebewegung als ursächlich dafür, wie sich die dünnen Filamente verbiegen, während die Motoren sie vorwärts bewegen. „Diese Annahme ist aber falsch“, sagt Christoph Weber, der mittlerweile am Max-Planck-Institut für Physik komplexer Systeme arbeitet.

„Die Brown´sche Bewegung hat nur einen geringen Einfluss auf die Form der Filamente.“ Die Münchner Forscher konnten jetzt nachweisen, dass stattdessen die molekularen Motoren nicht nur die Partikel antreiben, sondern auch dafür sorgen, dass sich die Partikel biegen. „Die Filamente zeigen starke lokale Krümmungen, die einer Verteilung gehorchen, die nicht mit der Wärmebewegung erklärt werden kann“, sagt Ryo Suzuki.

Wechselwirkungen nicht nur paarweise

Zudem konnten die Physiker zeigen, dass nicht etwa wiederholte Stöße zwischen jeweils zwei Partikeln dazu führen, dass sich die Filamente nach und nach ausrichten und dann kollektiv vorwärts bewegen. Tatsächlich scheinen gleichzeitige Interaktionen zwischen vielen Partikeln für kollektive Bewegungen verantwortlich zu sein. Filamente sind offenbar in Verbindung untereinander und wechselwirken nicht nur paarweise, sondern ständig mit vielen Partikeln.

Die Forscher konnten im Experiment beobachten, dass sich abhängig von der Dichte und Länge der Filamente ein sogenannter Phasenübergang von einer nicht ausgerichteten zu einer kollektiv bewegenden Phase ergibt. Dies ähnelt dem Kondensieren von Gas zu einer Flüssigkeit, nur mit dem Unterschied, dass sich nicht die Molekülbewegung, sondern die Ausrichtung der Partikel ändert.

Theoretisch betrachtet bedeutet das, dass die bislang favorisierte sogenannte Gastheorie für angetriebene Partikel als Erklärung im Allgemeinen nicht ausreicht, um die Beobachtungen zu erklären. Es sieht eher so aus, als würden sich die Filamente kollektiv wie in einer Flüssigkeit bewegen.

„Wir brauchen neue theoretische Konzepte, die über das gasartige Bild, wie kollektive Bewegung entsteht, hinausgehen“, sagt LMU-Physiker Erwin Frey, dessen Forschung auch von der Exzellenzinitiative NIM gefördert wird. Was auf mikroskopischer Ebene beim gemeinsamen Ausrichten physikalisch passiert, also wie die Filamente reiben oder sich austauschen, ist bislang noch nicht geklärt. Ein besseres Verständnis der Physik aktiv getriebener Systeme würde es erlauben, vollkommen neuartige Nanosysteme, die im Kollektiv agieren, zu konstruieren.

Publikationen:
Polar pattern formation in driven filament systems requires non-binary particle collisions
Ryo Suzuki, Christoph A. Weber, Erwin Frey and Andreas R. Bausch
Nature Physics 2015
10.1038/nphys3423

Random bursts determine dynamics of active filaments
Christoph A. Weber, Ryo Suzuki, Volker Schaller, Igor S. Aranson, Andreas R. Bausch, and Erwin Frey
Proceedings of the National Academy of Sciences (PNAS) 2015
10.1073/pnas.1421322112

Kontakt:
Prof. Dr. Erwin Frey
LMU, Fakultät für Physik
Lehrstuhl für Biologische und Statistische Physik
E-Mail: frey@lmu.de

Luise Dirscherl | Ludwig-Maximilians-Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit
21.08.2017 | Universität Leipzig

nachricht Topologische Quantenzustände einfach aufspüren
21.08.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz