Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Schwarmbildung in Nanosystemen

19.08.2015

Prinzipien der Selbstorganisation von Biomolekülen: Fadenförmige Filamente zeigen Phasen synchroner Bewegung. Münchner Physiker haben neue Erkenntnisse darüber, was die gemeinsame Ausrichtung antreibt.

Aus vielen Bausteinen bestehende, lebende Materie hat bisweilen außergewöhnliche Fähigkeiten, sich selbst zu organisieren und kollektive Bewegungen auszuführen. Das funktioniert bei einem Vogelschwarm im großen Maßstab ähnlich wie bei sich gemeinsam bewegenden Gruppen von Bakterien oder Zellen. Physiker interessieren sich für die zugrunde liegenden theoretischen Mechanismen hinter solch geordneten Strukturen und Bewegungen.


Foto: Matthias Krüttgen / Fotolia.com

Quelle: http://www.uni-muenchen.de/forschung/news/2015/frey_mikrofilamente.html

So wollen sie die makroskopischen Phänomene besser verstehen lernen. Dr. Christoph Weber und Professor Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik, von der LMU untersuchten deshalb gemeinsam mit ihren Kollegen Dr. Ryo Suzuki und Professor Andreas Bausch von der Technischen Universität München ein Modellsystem aus fadenförmigen Aktin-Molekülen.

Solche Mikrofilamente sind beteiligt an der aktiven Bewegung von Zellen und an intrazellulären Transportvorgängen. Die Filamente ließen sich im Experiment von auf einem Untergrund aufgeklebten molekularen Motoren bewegen.

Die Physiker konnten so studieren, wie sich einzelne Filamente verbiegen, was passiert wenn zwei Filamente zusammenstoßen, und unter welchen Bedingungen sich die Filamente kollektiv ausrichten. Davon berichten sie in aktuellen Arbeiten in den Fachblättern Nature Physics und PNAS.

Gemäß der bisher gängigen Theorie galt vorwiegend die Brown´sche Wärmebewegung als ursächlich dafür, wie sich die dünnen Filamente verbiegen, während die Motoren sie vorwärts bewegen. „Diese Annahme ist aber falsch“, sagt Christoph Weber, der mittlerweile am Max-Planck-Institut für Physik komplexer Systeme arbeitet.

„Die Brown´sche Bewegung hat nur einen geringen Einfluss auf die Form der Filamente.“ Die Münchner Forscher konnten jetzt nachweisen, dass stattdessen die molekularen Motoren nicht nur die Partikel antreiben, sondern auch dafür sorgen, dass sich die Partikel biegen. „Die Filamente zeigen starke lokale Krümmungen, die einer Verteilung gehorchen, die nicht mit der Wärmebewegung erklärt werden kann“, sagt Ryo Suzuki.

Wechselwirkungen nicht nur paarweise

Zudem konnten die Physiker zeigen, dass nicht etwa wiederholte Stöße zwischen jeweils zwei Partikeln dazu führen, dass sich die Filamente nach und nach ausrichten und dann kollektiv vorwärts bewegen. Tatsächlich scheinen gleichzeitige Interaktionen zwischen vielen Partikeln für kollektive Bewegungen verantwortlich zu sein. Filamente sind offenbar in Verbindung untereinander und wechselwirken nicht nur paarweise, sondern ständig mit vielen Partikeln.

Die Forscher konnten im Experiment beobachten, dass sich abhängig von der Dichte und Länge der Filamente ein sogenannter Phasenübergang von einer nicht ausgerichteten zu einer kollektiv bewegenden Phase ergibt. Dies ähnelt dem Kondensieren von Gas zu einer Flüssigkeit, nur mit dem Unterschied, dass sich nicht die Molekülbewegung, sondern die Ausrichtung der Partikel ändert.

Theoretisch betrachtet bedeutet das, dass die bislang favorisierte sogenannte Gastheorie für angetriebene Partikel als Erklärung im Allgemeinen nicht ausreicht, um die Beobachtungen zu erklären. Es sieht eher so aus, als würden sich die Filamente kollektiv wie in einer Flüssigkeit bewegen.

„Wir brauchen neue theoretische Konzepte, die über das gasartige Bild, wie kollektive Bewegung entsteht, hinausgehen“, sagt LMU-Physiker Erwin Frey, dessen Forschung auch von der Exzellenzinitiative NIM gefördert wird. Was auf mikroskopischer Ebene beim gemeinsamen Ausrichten physikalisch passiert, also wie die Filamente reiben oder sich austauschen, ist bislang noch nicht geklärt. Ein besseres Verständnis der Physik aktiv getriebener Systeme würde es erlauben, vollkommen neuartige Nanosysteme, die im Kollektiv agieren, zu konstruieren.

Publikationen:
Polar pattern formation in driven filament systems requires non-binary particle collisions
Ryo Suzuki, Christoph A. Weber, Erwin Frey and Andreas R. Bausch
Nature Physics 2015
10.1038/nphys3423

Random bursts determine dynamics of active filaments
Christoph A. Weber, Ryo Suzuki, Volker Schaller, Igor S. Aranson, Andreas R. Bausch, and Erwin Frey
Proceedings of the National Academy of Sciences (PNAS) 2015
10.1073/pnas.1421322112

Kontakt:
Prof. Dr. Erwin Frey
LMU, Fakultät für Physik
Lehrstuhl für Biologische und Statistische Physik
E-Mail: frey@lmu.de

Luise Dirscherl | Ludwig-Maximilians-Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics