Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Den Ring schließen

27.04.2016

Wie Bakterien sich teilen, ist bisher nicht vollständig klar. LMU-Physiker zeigen jetzt, dass sich Proteine bei hoher Dichte von selbst zu Ringen zusammenschließen können. Sie schnüren die Mutterzelle ein und teilen sie so in Tochterzellen.

Das Abschnüren besiegelt die Trennung: Bakterien vermehren sich mithilfe eines Proteinrings, der sich in der Zellmitte wie ein Gummiband zusammenzieht und die Mutterzelle in zwei Tochterzellen teilt. LMU-Physiker um Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik, haben nun mithilfe von mathematischen Modellierungen untersucht, welche Mechanismen die Entstehung dieses sogenannten Z-Rings steuern.


Die Kreisbewegung der gekrümmten Polymere und ihre Kollisionen miteinander führen ab einer bestimmten Teilchenzahl zur Bildung ringförmiger Cluster. Bild: C. Hohmann, NIM

Dabei haben die Forscher einen ganz neuen Mechanismus der Musterbildung entdeckt: Die Simulationen zeigen, dass sich die ringbildenden Proteine von einer gewissen Moleküldichte an von selbst organisieren und zu Ringen zusammenschließen.

„Aus biologischer Sicht ist dies hoch interessant, weil es ein völlig neues Licht auf die bisher nicht verstandene Dynamik der bakteriellen Zellteilung wirft“, sagt Frey. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Physical Review Letters.

Der Z-Ring besteht aus sogenannten FtsZ-Proteinen, die sich zu gekrümmten Polymeren zusammenschließen, wie Experimente auf künstlichen Membranen zeigten. Diese Polymere können ihre Position verändern, indem einzelne Proteinbausteine aktiv umverteilt werden: Am Anfang des Proteins werden neue Bausteine angebaut, während am Polymerende Proteine wieder entfernt werden. Durch diesen sogenannten „Tretmühleneffekt“ scheint das Polymer über die Membran zu kriechen.

„Unter bestimmten Versuchsbedingungen bilden die Polymere nach einiger Zeit Cluster, die sich zu rotierenden Ringen zusammenschließen“, sagt Jonas Denk, gemeinsam mit Lorenz Huber Erstautor der Studie. „Interessanterweise haben diese Ringe in etwa den Durchmesser einer Bakterienzelle“.

Rotierende Cluster

Den Wissenschaftlern gelang es nun, diesen ungewöhnlichen Effekt mithilfe von mathematischen Modellen zu simulieren, die die Krümmung der Polymere und ihre damit verbundene Kreisbewegung berücksichtigen. Als weiterer Parameter ging in die Simulation ein, dass sich die Polymere gegenseitig abstoßen, es also kein „Übereinanderlaufen“ der Polymere gibt. „Unsere zentrale Frage war, welcher Mechanismus die Bildung der ringförmigen Muster antreibt“, sagt Huber.

Die Simulationen haben nun gezeigt, dass die Dichte der Polymere - also die Teilchenzahl - der entscheidende Faktor ist: Sind nur wenige Teilchen vorhanden, gibt es kaum Wechselwirkungen und die einzelnen Polymere bleiben voneinander separiert. Steigt die Teilchenzahl jedoch, kollidieren die Polymere miteinander. Als Folge der Kollisionen und der Kreisbewegung der einzelnen gekrümmten Polymere gruppieren sich die Polymere dann zu Clustern zusammen, die einen dichten rotierenden Ring bilden.

Nach Ansicht der Wissenschaftler legen ihre Ergebnisse nahe, dass auch die Bildung des Z-Rings in Bakterienzellen auf dieser Selbstorganisation der FtsZ-Polymere beruht – dass also die Proteindichte auch in lebenden Zellen die treibende Kraft ist, über die die Zelle die Ringbildung steuert. Ein solches sich selbst antreibendes System wäre ein völlig neuartiger Mechanismus der Ringbildung, der sich grundlegend davon unterscheidet, wie etwa in eukaryotischen Zellen Zellwände abgeschnürt werden:

„Dort sind für diesen Prozess bestimmte Motorproteine essenziell, die sich an die Zellwände anheften und richtig ziehen“, sagt Denk. Zusätzlich zu ihrer biologischen Bedeutung seien diese Ergebnisse auch aus mathematisch-physikalischer Sicht hoch interessant, erklärt Huber: „Die Phänomenologie unseres Modells unterscheidet sich stark von konventionellen Klassen angetriebener oder aktiver Teilchen. Seine mathematische Beschreibung führt zu einer verallgemeinerten Version einer komplexen Gleichung, die im Zusammenhang mit Phänomenen wie der bakteriellen Turbulenz und der Musterbildung in allgemeinen, nichtlinearen Systemen eine Rolle spielt.“
Physical Review Letters 2016

Publikation:
Active Curved Polymers form Vortex Patterns on Membranes
Jonas Denk, Lorenz Huber, Emanuel Reithmann, and Erwin Frey
Physical Review Letters 2016

Kontakt:
Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Tel.: 089 2180 4538 (Sekretariat)
frey@lmu.de
http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie