Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Den Ring schließen

27.04.2016

Wie Bakterien sich teilen, ist bisher nicht vollständig klar. LMU-Physiker zeigen jetzt, dass sich Proteine bei hoher Dichte von selbst zu Ringen zusammenschließen können. Sie schnüren die Mutterzelle ein und teilen sie so in Tochterzellen.

Das Abschnüren besiegelt die Trennung: Bakterien vermehren sich mithilfe eines Proteinrings, der sich in der Zellmitte wie ein Gummiband zusammenzieht und die Mutterzelle in zwei Tochterzellen teilt. LMU-Physiker um Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik, haben nun mithilfe von mathematischen Modellierungen untersucht, welche Mechanismen die Entstehung dieses sogenannten Z-Rings steuern.


Die Kreisbewegung der gekrümmten Polymere und ihre Kollisionen miteinander führen ab einer bestimmten Teilchenzahl zur Bildung ringförmiger Cluster. Bild: C. Hohmann, NIM

Dabei haben die Forscher einen ganz neuen Mechanismus der Musterbildung entdeckt: Die Simulationen zeigen, dass sich die ringbildenden Proteine von einer gewissen Moleküldichte an von selbst organisieren und zu Ringen zusammenschließen.

„Aus biologischer Sicht ist dies hoch interessant, weil es ein völlig neues Licht auf die bisher nicht verstandene Dynamik der bakteriellen Zellteilung wirft“, sagt Frey. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Physical Review Letters.

Der Z-Ring besteht aus sogenannten FtsZ-Proteinen, die sich zu gekrümmten Polymeren zusammenschließen, wie Experimente auf künstlichen Membranen zeigten. Diese Polymere können ihre Position verändern, indem einzelne Proteinbausteine aktiv umverteilt werden: Am Anfang des Proteins werden neue Bausteine angebaut, während am Polymerende Proteine wieder entfernt werden. Durch diesen sogenannten „Tretmühleneffekt“ scheint das Polymer über die Membran zu kriechen.

„Unter bestimmten Versuchsbedingungen bilden die Polymere nach einiger Zeit Cluster, die sich zu rotierenden Ringen zusammenschließen“, sagt Jonas Denk, gemeinsam mit Lorenz Huber Erstautor der Studie. „Interessanterweise haben diese Ringe in etwa den Durchmesser einer Bakterienzelle“.

Rotierende Cluster

Den Wissenschaftlern gelang es nun, diesen ungewöhnlichen Effekt mithilfe von mathematischen Modellen zu simulieren, die die Krümmung der Polymere und ihre damit verbundene Kreisbewegung berücksichtigen. Als weiterer Parameter ging in die Simulation ein, dass sich die Polymere gegenseitig abstoßen, es also kein „Übereinanderlaufen“ der Polymere gibt. „Unsere zentrale Frage war, welcher Mechanismus die Bildung der ringförmigen Muster antreibt“, sagt Huber.

Die Simulationen haben nun gezeigt, dass die Dichte der Polymere - also die Teilchenzahl - der entscheidende Faktor ist: Sind nur wenige Teilchen vorhanden, gibt es kaum Wechselwirkungen und die einzelnen Polymere bleiben voneinander separiert. Steigt die Teilchenzahl jedoch, kollidieren die Polymere miteinander. Als Folge der Kollisionen und der Kreisbewegung der einzelnen gekrümmten Polymere gruppieren sich die Polymere dann zu Clustern zusammen, die einen dichten rotierenden Ring bilden.

Nach Ansicht der Wissenschaftler legen ihre Ergebnisse nahe, dass auch die Bildung des Z-Rings in Bakterienzellen auf dieser Selbstorganisation der FtsZ-Polymere beruht – dass also die Proteindichte auch in lebenden Zellen die treibende Kraft ist, über die die Zelle die Ringbildung steuert. Ein solches sich selbst antreibendes System wäre ein völlig neuartiger Mechanismus der Ringbildung, der sich grundlegend davon unterscheidet, wie etwa in eukaryotischen Zellen Zellwände abgeschnürt werden:

„Dort sind für diesen Prozess bestimmte Motorproteine essenziell, die sich an die Zellwände anheften und richtig ziehen“, sagt Denk. Zusätzlich zu ihrer biologischen Bedeutung seien diese Ergebnisse auch aus mathematisch-physikalischer Sicht hoch interessant, erklärt Huber: „Die Phänomenologie unseres Modells unterscheidet sich stark von konventionellen Klassen angetriebener oder aktiver Teilchen. Seine mathematische Beschreibung führt zu einer verallgemeinerten Version einer komplexen Gleichung, die im Zusammenhang mit Phänomenen wie der bakteriellen Turbulenz und der Musterbildung in allgemeinen, nichtlinearen Systemen eine Rolle spielt.“
Physical Review Letters 2016

Publikation:
Active Curved Polymers form Vortex Patterns on Membranes
Jonas Denk, Lorenz Huber, Emanuel Reithmann, and Erwin Frey
Physical Review Letters 2016

Kontakt:
Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Tel.: 089 2180 4538 (Sekretariat)
frey@lmu.de
http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise