Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bildgebung mit Neutronen: Magnetische Domänen erstmals in 3-D sichtbar

23.11.2010
Bisher konnten magnetische Domänen nur zweidimensional abgebildet werden. Wissenschaftlern des Helmholtz-Zentrum Berlin (HZB) ist es nun gelungen, diese Bereiche im Inneren von magnetischen Stoffen zum ersten Mal dreidimensional darzustellen.

Obwohl sie in fast jedem magnetischen Material zu finden sind, kann man sie nicht sehen: Magnetische Domänen sind mikroskopisch kleine, magnetisierte Bereiche. Jedes magnetische Material, ist in solche Domänen aufgeteilt. Wissenschaftler nennen sie „Weiss´sche Bezirke“, nach dem Physiker Pierre-Ernest Weiss, der ihre Existenz vor über hundert Jahren theoretisch vorhergesagt hatte. 1907 erkannte er, dass die magnetischen Momente der Atome innerhalb eines begrenzten Bezirks gleich ausgerichtet sind.


Die Grenzen der magnetischen Domänen können am Computer dreidimensional dargestellt werden. Grafik: HZB/Manke, Grothausmann

Diese Theorie konnte bislang nur mit zweidimensionalen Bildern und an Materialoberflächen nachverfolgt werden. Dr. Ingo Manke und sein Team am Institut Angewandte Materialforschung des HZB haben gemeinsam mit Kollegen der Bundesanstalt für Materialforschung und dem Paul-Scherrer Institut eine Methode entwickelt, mit der sie die magnetischen Domänen vollständig in ihrer räumlichen Struktur darstellen können – auch im Materialinneren. Dafür wurden am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden spezielle Eisensilizium-Kristalle hergestellt, für deren innere Domänenstruktur die Forscher in der Arbeitsgruppe von Dr. Schäfer bereits Modellvorstellungen entwickelt hatten, deren tatsächliche Existenz nun erstmals nachgewiesen werden konnte. Damit lösen die Forscher ein Jahrzehnte altes Problem in der Bildgebung. Sie publizieren dies in der Zeitschrift Nature Communications (DOI: 10.1038 /ncomms1125).

Die meisten magnetischen Stoffe bestehen aus einem komplexen Netzwerk magnetischer Domänen. Die von den Wissenschaftlern entwickelte Methode nutzt die Bereiche aus, in denen die Bezirke aneinanderstoßen – sogenannte Domänengrenzen. Innerhalb einer Domäne sind alle magnetischen Momente gleich, von Domäne zu Domäne ist die magnetische Ausrichtung aber verschieden. An jeder Domänengrenze wechselt also die Richtung des Magnetfeldes. Diese Änderungen nutzen die Forscher für ihr radiografisches Verfahren, bei dem sie statt Licht Neutronen verwenden.

Magnetische Felder lenken die Neutronen in ihrer Flugrichtung leicht ab, genauso wie Licht in Wasser abgelenkt wird: Einen Gegenstand im Wasser kann man daher nicht direkt erkennen. Das Objekt erscheint verzerrt und an einem anderem Ort. In ähnlicher Weise überqueren die Neutronen auf ihrem Weg durch das magnetische Material Domänengrenzen. An diesen werden sie in verschiedene Richtungen abgelenkt.

Die Ablenkung ist allerdings ein sehr schwacher Effekt. Im Neutronen-Radiogramm ist er gewöhnlich nicht sichtbar, weil er von nicht abgelenkten Strahlen überlagert wird. Die Forscher setzten daher mehrere Beugungsgitter ein, um die abgelenkten Strahlen zu separieren. Während der Messung drehen sie die Probe und durchleuchten sie aus allen Richtungen. Aus den separierten Strahlen können sie alle Domänenformen berechnen und das Domänen-Netzwerk vollständig abbilden.

Magnetische Domänen sind wichtig, um Materialeigenschaften und physikalische Naturgesetze zu verstehen. Auch im Alltag spielen sie eine wichtige Rolle: vor allem in Speichermedien wie Festplatten und Ladegeräten, beispielsweise für Laptops oder Elektrofahrzeuge. Wählt man die Eigenschaften der Domänen so, dass möglichst wenig Strom an den Domänengrenzen verloren geht, werden die Speichermedien leistungsfähiger.

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten