Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bilder wie im wahren Leben

14.12.2010
Mit Laserlichtquellen lassen sich faszinierend echt wirkende Bilder erzeugen. In Flugzeugsimulatoren oder bei Großprojektionen werden sie schon eingesetzt.

Für viele Anwendungen sind sie jedoch noch zu groß. Wissenschaftlern des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist es jetzt gelungen, besonders kleine, brillante Laserlichtquellen zu entwickeln, die deutlich kompaktere Systeme für Displays ermöglichen.

„Bei dieser Achterbahnfahrt ist mir richtig schlecht geworden“, erinnert sich Dr. Katrin Paschke, Leiterin einer Nachwuchsgruppe am FBH. Dabei saß sie nicht einmal selbst im Wagon, sondern hat die Fahrt nur im Film gesehen. Die besonders realitätsnahen Bilder sind durch eine besondere Projektionstechnik entstanden. „Mit der Laserprojektion decken wir den Farbraum des menschlichen Auges zu neunzig Prozent ab. Die Bildqualität ist dadurch faszinierend. Aktuelle Flachbildschirme im Handel schaffen nur etwa fünfzig Prozent“, erklärt Paschke.

Der Nachteil an den Laserprojektoren ist bisher vor allem, dass sie gewaltige Abmessungen erreichen. In Flugsimulatoren werden schrankgroße Lasersysteme eingesetzt. Das schränkt die Einsatzmöglichkeiten erheblich ein, für den Fernseher zu Hause kommt die Technologie damit noch nicht infrage. Wissenschaftler entwickeln daher immer kleinere Bauteile. Diese Laserlichtquellen sollen zugleich hohe optische Ausgangleistungen im Wattbereich erreichen und eine exzellente Strahlqualität aufweisen.

Katrin Paschke hat mit ihrer Gruppe im Rahmen der BMBF-geförderten Initiative „InnoProfile“ und einem Entwicklungsprojekt mit der Firma LDT Laser Display Technology GmbH aus Jena streichholzschachtelgroße rote Laserlichtquellen entwickelt, die LDT in ihre neue Generation von Laserprojektoren integriert möchte.

In ihrem rot leuchtenden Mikromodul haben die Wissenschaftler am FBH mehrere Elemente wie Laserchip und Mikrooptiken kombiniert. Das rote Licht wird dabei von nur reiskorngroßen Halbleiterlasern direkt erzeugt. Eine der Herausforderungen bei den für Displaysystemen benötigten hohen Leistungen bestand darin, die erheblichen Leistungsdichten so zu reduzieren, dass das Lasermaterial nicht schmilzt. Diese Leistung darf sich daher nicht auf eine zu kleine Austrittsfläche für den Laserstrahl konzentrieren.

Am FBH wurde deshalb ein Laserchip entwickelt, der sich zum Austritt hin trapezförmig öffnet. So kann der Laserstrahl mit guter Strahlqualität kompakt erzeugt und im Trapezteil verbreitert werden, dass die hohen Ausgangsleistungen auf eine vergleichsweise breite Austrittsfläche von einigen hundert Mikrometern verteilt werden. Damit die Strahlung der Lasermodule für Laserprojektoren genutzt werden kann, muss der Strahl anschließend kollimiert, d.h. parallel ausgerichtet werden. Der Strahl, den Halbleiterlaser üblicherweise emittieren, wird nämlich mit zunehmender Entfernung schnell breiter und verliert dadurch an Bestrahlungsstärke.

Das gesamte Modul sollte dabei die Größe einer Streichholzschachtel nicht überschreiten. Deshalb wurden für die Kollimierung speziell angefertigte Mikrooptiken (ca. 1 x 1 x 1 mm³) verwendet, die mit höchster Präzision von unter einem Mikrometer positioniert und fixiert werden müssen. Ein ausgeklügeltes Wärmemanagement sorgt zudem dafür, dass die Diodenlaser im optimalen Temperaturbereich von unter 15°C betrieben werden können. Um die überschüssige Wärme abzuleiten, nutzen die Forscher speziell gefertigte Industriediamanten.

Mit diesen winzig kleinen brillanten Laserlichtquellen will das Team um Katrin Paschke nicht nur dafür sorgen, dass in Planetarien oder Flugsimulatoren gestochen scharfe Bilder erzeugt werden. Künftig sollen auch ins heimische Wohnzimmer lebensechte Bilder mit Laserfernsehern geliefert werden. Katrin Paschke erwartet im Entertainmentbereich sogar noch mehr: „Irgendwann werden Hologramme durch unsere Wohnung springen.“

Pressekontakt:
Petra Immerz
Communications & Public Relations Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de


Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der welt­weit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikro­wellen­technik und Opto­elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Inno­vationen in den gesell­schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Laser­systeme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwen­dungsfelder reichen von der Medizin­technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten­kommu­nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunk­systeme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikro­­wellen­plasmaquellen mit Nieder­spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen­arbeit des FBH mit Industriepartnern und Forschungs­einrichtungen garantiert die schnelle Umsetzung der Ergeb­nisse in praktische Anwendungen. Das Institut beschäftigt 220 Mitarbeiter und hat einen Etat von 21 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften