Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bielefelder Hochenergie-Physiker erhalten neuen Superrechner

23.12.2011
Bund und Land investieren 1,1 Millionen Euro in die Anschaffung

Die Fakultät für Physik an der Universität Bielefeld bekommt einen neuen Hochleistungscomputer. Die Forscher wollen damit die Eigenschaften von stark wechselwirkender Materie untersuchen, so dass sie unter anderem Aussagen über die Eigenschaften des frühen Universums unmittelbar nach dem Urknall machen können. 1,1 Millionen Euro kostet der Superrechner, der aus Bundes- und Landesmitteln finanziert wird. Bei einem Einweihungskolloquium am Mittwoch, 25. Januar 2012, wird der neue Hochleistungscomputer ab 16 Uhr im Hörsaal 2 der Universität Bielefeld vorgestellt.

Mit dem neuen Hochleistungscomputer berechnen die Bielefelder Physiker die Eigenschaften von so genannten "Quarks" und "Gluonen". Quarks gelten als elementare Bausteine aller Materie. Die Kräfte zwischen ihnen werden durch den Austausch von Kraftteilchen, den Gluonen, vermittelt. Die Physiker wollen insbesondere herausfinden, was passiert, wenn Quarks sehr hoch erhitzt oder stark zusammengepresst werden. Bisher ist bekannt, dass sich das Verhalten der Quarks bei einer Temperatur von 1,78 Billionen Grad, die unter Verwendung des Vorgängerrechners apeNEXT recht genau bestimmt werden konnte, drastisch ändert. Zwar ist diese Temperatur etwa 100.000 Mal höher als im Inneren der Sonne, aber nicht unnatürlich hoch: Das Universum war in seiner Frühphase, kurz nach dem Urknall, sogar heißer. In dieser Zeit wurden die Grundsteine für die weitere Entwicklung des Weltalls gelegt, und die Eigenschaften der "Quarksuppe", des Quark-Gluon-Plasmas, spielen daher für den heutigen Zustand des Universums eine wichtige Rolle.

Um den "Anfang der Welt" experimentell zu untersuchen, werden heute mit Teilchenbeschleunigern für kurze Zeit auf kleinem Raum Zustände geschaffen, wie sie im frühen Universum geherrscht haben. Das geschieht mit dem Teilchenbeschleuniger LHC (Large Hadron Collider) der Europäischen Organisation für Kernforschung CERN und dem Teilchenbeschleuniger RHIC (Relativistic Heavy Ion Collider) in Brookhaven, New York. In enger Zusammenarbeit mit den dortigen Forschern sollen auf dem neuen Bielefelder Rechner die Eigenschaften des Quark-Gluon-Plasmas detailliert per Computersimulation untersucht werden.

Für die Installation des Hochleistungsrechners arbeitet die Universität mit den Firmen sysGen GmbH und NVIDIA zusammen. Die sysGen GmbH ist ein Ausrüster für Computertechnik. NVIDIA ist ein weltweit führender Hersteller von Grafikprozessoren (GPUs). Solche Grafikprozessoren finden sich in PCs oder Spielecomputern. Hier werden sie in einem Netzwerk mit Computerprozessoren zusammengeschlossen, einem GPU-Cluster. Insgesamt wurden 400 Grafik-prozessoren verbaut. Damit beträgt die Rechenleistung des Clusters circa 500 Teraflops. Das entspricht der Leistung von etwa 10.000 herkömmlichen PCs. Eine Besonderheit des neuen Rechners ist sein vergleichsweise geringer Stromverbrauch. Der Energieverbrauch ist 50 Mal kleiner als bei einem System mit gleicher Rechenleistung, das aus PCs besteht.

Edwin Laermann, Professor für Theoretische Physik an der Universität Bielefeld, verspricht sich viel von dem neuen Superrechner: "Wir sind begeistert von den neuen Möglichkeiten für die Erforschung wechselwirkender heißer und dichter Materie, die uns der neue GPU-Cluster in Bielefeld bringen wird." Laermann gehört zur Arbeitsgruppe "Gittereichtheorie", die den Superrechner einsetzen wird. Dr. Olaf Kaczmarek berichtet, dass der neue Hochleistungsrechner auf der mehr als 15-jährigen Erfahrung aufbaut, die die Arbeitsgruppe mit dem Einsatz spezieller Computer für die Quantenchromodynamik (QCD) hat, der Theorie der starken Wechselwirkung von Quarks und Gluonen. "Wir freuen uns auf eine erfolgreiche Kooperation mit den Kollegen vom QCD Support von NVIDIA, die die technische Unterstützung für den neuen Hochleistungsrechner übernehmen, und den amerikanischen Forscherkollegen vom USQCD-Konsortium, das ähnliche Anlagen für ihre Untersuchung der stark wechselwirkenden Physik nutzt", sagt Frithjof Karsch, Professor an der Universität Bielefeld und dem Brookhaven National Laboratory in den USA.

Die Forschung zu stark-wechselwirkender Materie ist Teil des Forschungsschwerpunktes „Theoretische Wissenschaften“ (Theoretical Sciences) der Universität Bielefeld, in dem Mathematik, Theoretische Physik und Wirtschaftsmathematik kooperieren.

Kontakt:
Dr. Olaf Kaczmarek
Fakultät für Physik
Telefon: 0521 / 106- 6212
E-Mail: okacz@physik.uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www2.physik.uni-bielefeld.de/lattice.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit