Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das bewegte Leben der Sternoberflächen

15.09.2011
In der Hülle der Sonne brodelt es. Verantwortlich dafür ist die Energie, die im Sterninneren durch Kernfusion erzeugt wird. Will die Energie nach außen, kann aber nicht schnell genug durch die Sternmaterie an die Oberfläche dringen, bringt sie diese "zum Kochen".

Derartig angeregte sonnenähnliche Pulsationen wurden nun von einem Forschungsteam um Victoria Antoci, Astronomin an der Universität Wien, mithilfe des Kepler-Weltraumteleskops in einem deutlich heißeren Stern als die Sonne, genannt HD 187547, entdeckt. Die WissenschafterInnen publizieren dazu in der aktuellen Ausgabe von "Nature".


Schematische Darstellung des Sternaufbaus der Sonne (links) und eines Delta-Scuti-Sterns
(Illustration: Victoria Antoci)

Neben der Entdeckung erdähnlicher Planeten befasst sich die Astronomie unter anderem mit der Erforschung von Sternschwingungen. Diese führen zu periodischen Helligkeitsschwankungen mancher Sterne. Die Asteroseismologie funktioniert dabei ähnlich wie die seismische Erforschung des Erdinneren: Die Frequenzen seismischer Wellen sind von Masse und Aufbau eines Körpers abhängig und erlauben dadurch dessen innere Struktur tomografisch zu reproduzieren.

Was bringt Sterne zum Schwingen?

Mehrere Mechanismen halten periodische Schwingungen in Sternen aufrecht. In der Sonne ist es das "Brodeln" (die Konvektion) in den äußeren Sternschichten, vergleichbar mit kochendem Wasser und dem dadurch hörbaren Geräusch des Kochtopfes. In Sternen mit der 1,5-fachen Sonnenmasse und mehr ist es der sogenannte Kappa-Mechanismus, der periodische Pulsationen anregt. "Dieser Prozess funktioniert ähnlich wie eine Wärmekraftmaschine oder ein Dieselmotor", erklärt Victoria Antoci vom Institut für Astronomie der Universität Wien.

Aufbau eines Sterns

Durch jahrzehntelange Erforschung von Sonnenoszillationen ist bekannt, dass die Energie in den äußeren 30 Prozent des Sonnenradius durch Konvektion und in den darunterliegenden Schichten durch Strahlung transportiert wird. Besitzt ein Stern doppelt so viel Masse, ist nur noch etwa ein Prozent der Hülle konvektiv. Die im Kern entstehende Energie wird auch in diesem Fall bis zur äußeren Schale durch Strahlung transportiert. Sterne noch größerer Masse sollten gar keine konvektive Hülle mehr besitzen. Ab wann diese genau verschwindet, ist aufgrund der extremen physikalischen Verhältnisse bislang unbekannt.

Eine Möglichkeit, dies zu erforschen, ist die Asteroseismologie von sogenannten Delta-Scuti-Sternen. Diese Sterne liegen in jenem Massebereich, in dem die konvektive Hülle verschwindet. Sie zeigen periodische Lichtveränderungen, die auf die durch den Kappa-Mechanismus angetriebenen Pulsationen zurückzuführen sind. "Seit mehr als zehn Jahren sagen WissenschafterInnen vorher, dass trotz der geringen Tiefe (ein Prozent) der konvektiven Hülle in Delta-Scuti-Sternen die Konvektion energetisch genug vonstattengeht, um auch sonnenähnliche Pulsationen anzuregen. Jetzt ist uns der Beweis gelungen", freut sich Victoria Antoci.

"Kepler" bestätigt die Theorie

Im Rahmen ihrer Doktorarbeit untersuchte die Forscherin Hunderte vom Kepler-Weltraumteleskop der NASA beobachtete Sterne nach Spuren von sonnenähnlichen Oszillationen und wurde fündig: Der Delta-Scuti-Stern mit dem Namen HD 187547 ist der erste Vertreter dieser Gruppe, der beide Arten von Oszillationen zeigt. "Mit HD 187547 haben wir ein ideales Objekt gefunden, um unterschiedlichste Prozesse und deren Wechselwirkungen unter extremen physikalischen Bedingungen zu untersuchen", sagt Gerald Handler vom Nikolaus Kopernikus Center in Warschau, der die Doktorarbeit von Victoria Antoci betreut.

Aussagen über die tatsächliche Tiefe der äußeren Konvektionsschicht sind durch die in "Nature" publizierte Arbeit erstmals möglich, ebenso wie eine Kalibration der Konvektionsmodelle in diesem Temperaturbereich. Zudem lässt sich durch das Vorhandensein zweier verschiedener Arten von Sternschwingungen der innere Aufbau von HD 187547 mit bisher unerreichter Genauigkeit modellieren. Die ForscherInnen stellten auch fest, dass HD 187547 abnorme Häufigkeiten bestimmter chemischer Elemente an seiner Oberfläche aufweist, was höchstwahrscheinlich mit einer langsamen Rotation des Sterns in Zusammenhang steht. Dabei sinken schwerere Elemente in die Tiefe, wo sie nicht mehr beobachtbar sind (man kann nur die Sternoberfläche direkt messen) und resultieren in einer Unterhäufigkeit im Sternspektrum. Leichte Elemente dagegen werden nach oben getrieben und zeigen eine Überhäufigkeit. Dieser physikalische Prozess ist als Diffusion bekannt und in Sternen wie HD 187547 noch nicht zur Gänze verstanden.

Publikation
The excitation of solar-like oscillations in a Sct star by efficient envelope convection. V. Antoci, G. Handler, T. L. Campante, A. O. Thygesen, A. Moya, T., Kallinger, D. Stello, A. Grigahcene, H. Kjeldsen, T. R. Bedding, T. Lüftinger, J. Christensen-Dalsgaard, G. Catanzaro, A. Frasca, P. De Cat, K. Uytterhoeven, H. Bruntt, G. Houdek, D. W. Kurtz, P. Lenz, A. Kaiser, J. Van Cleve, C. Allen & B. D. Clarke. In: Nature, September 14, 2011.
DOI:10.1038/nature10389.
Abstract: http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10389.html
Wissenschaftlicher Kontakt
Mag.a Victoria Antoci
Institut für Astronomie
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-4277-518 22
victoria.antoci@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie