Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das bewegte Leben der Sternoberflächen

15.09.2011
In der Hülle der Sonne brodelt es. Verantwortlich dafür ist die Energie, die im Sterninneren durch Kernfusion erzeugt wird. Will die Energie nach außen, kann aber nicht schnell genug durch die Sternmaterie an die Oberfläche dringen, bringt sie diese "zum Kochen".

Derartig angeregte sonnenähnliche Pulsationen wurden nun von einem Forschungsteam um Victoria Antoci, Astronomin an der Universität Wien, mithilfe des Kepler-Weltraumteleskops in einem deutlich heißeren Stern als die Sonne, genannt HD 187547, entdeckt. Die WissenschafterInnen publizieren dazu in der aktuellen Ausgabe von "Nature".


Schematische Darstellung des Sternaufbaus der Sonne (links) und eines Delta-Scuti-Sterns
(Illustration: Victoria Antoci)

Neben der Entdeckung erdähnlicher Planeten befasst sich die Astronomie unter anderem mit der Erforschung von Sternschwingungen. Diese führen zu periodischen Helligkeitsschwankungen mancher Sterne. Die Asteroseismologie funktioniert dabei ähnlich wie die seismische Erforschung des Erdinneren: Die Frequenzen seismischer Wellen sind von Masse und Aufbau eines Körpers abhängig und erlauben dadurch dessen innere Struktur tomografisch zu reproduzieren.

Was bringt Sterne zum Schwingen?

Mehrere Mechanismen halten periodische Schwingungen in Sternen aufrecht. In der Sonne ist es das "Brodeln" (die Konvektion) in den äußeren Sternschichten, vergleichbar mit kochendem Wasser und dem dadurch hörbaren Geräusch des Kochtopfes. In Sternen mit der 1,5-fachen Sonnenmasse und mehr ist es der sogenannte Kappa-Mechanismus, der periodische Pulsationen anregt. "Dieser Prozess funktioniert ähnlich wie eine Wärmekraftmaschine oder ein Dieselmotor", erklärt Victoria Antoci vom Institut für Astronomie der Universität Wien.

Aufbau eines Sterns

Durch jahrzehntelange Erforschung von Sonnenoszillationen ist bekannt, dass die Energie in den äußeren 30 Prozent des Sonnenradius durch Konvektion und in den darunterliegenden Schichten durch Strahlung transportiert wird. Besitzt ein Stern doppelt so viel Masse, ist nur noch etwa ein Prozent der Hülle konvektiv. Die im Kern entstehende Energie wird auch in diesem Fall bis zur äußeren Schale durch Strahlung transportiert. Sterne noch größerer Masse sollten gar keine konvektive Hülle mehr besitzen. Ab wann diese genau verschwindet, ist aufgrund der extremen physikalischen Verhältnisse bislang unbekannt.

Eine Möglichkeit, dies zu erforschen, ist die Asteroseismologie von sogenannten Delta-Scuti-Sternen. Diese Sterne liegen in jenem Massebereich, in dem die konvektive Hülle verschwindet. Sie zeigen periodische Lichtveränderungen, die auf die durch den Kappa-Mechanismus angetriebenen Pulsationen zurückzuführen sind. "Seit mehr als zehn Jahren sagen WissenschafterInnen vorher, dass trotz der geringen Tiefe (ein Prozent) der konvektiven Hülle in Delta-Scuti-Sternen die Konvektion energetisch genug vonstattengeht, um auch sonnenähnliche Pulsationen anzuregen. Jetzt ist uns der Beweis gelungen", freut sich Victoria Antoci.

"Kepler" bestätigt die Theorie

Im Rahmen ihrer Doktorarbeit untersuchte die Forscherin Hunderte vom Kepler-Weltraumteleskop der NASA beobachtete Sterne nach Spuren von sonnenähnlichen Oszillationen und wurde fündig: Der Delta-Scuti-Stern mit dem Namen HD 187547 ist der erste Vertreter dieser Gruppe, der beide Arten von Oszillationen zeigt. "Mit HD 187547 haben wir ein ideales Objekt gefunden, um unterschiedlichste Prozesse und deren Wechselwirkungen unter extremen physikalischen Bedingungen zu untersuchen", sagt Gerald Handler vom Nikolaus Kopernikus Center in Warschau, der die Doktorarbeit von Victoria Antoci betreut.

Aussagen über die tatsächliche Tiefe der äußeren Konvektionsschicht sind durch die in "Nature" publizierte Arbeit erstmals möglich, ebenso wie eine Kalibration der Konvektionsmodelle in diesem Temperaturbereich. Zudem lässt sich durch das Vorhandensein zweier verschiedener Arten von Sternschwingungen der innere Aufbau von HD 187547 mit bisher unerreichter Genauigkeit modellieren. Die ForscherInnen stellten auch fest, dass HD 187547 abnorme Häufigkeiten bestimmter chemischer Elemente an seiner Oberfläche aufweist, was höchstwahrscheinlich mit einer langsamen Rotation des Sterns in Zusammenhang steht. Dabei sinken schwerere Elemente in die Tiefe, wo sie nicht mehr beobachtbar sind (man kann nur die Sternoberfläche direkt messen) und resultieren in einer Unterhäufigkeit im Sternspektrum. Leichte Elemente dagegen werden nach oben getrieben und zeigen eine Überhäufigkeit. Dieser physikalische Prozess ist als Diffusion bekannt und in Sternen wie HD 187547 noch nicht zur Gänze verstanden.

Publikation
The excitation of solar-like oscillations in a Sct star by efficient envelope convection. V. Antoci, G. Handler, T. L. Campante, A. O. Thygesen, A. Moya, T., Kallinger, D. Stello, A. Grigahcene, H. Kjeldsen, T. R. Bedding, T. Lüftinger, J. Christensen-Dalsgaard, G. Catanzaro, A. Frasca, P. De Cat, K. Uytterhoeven, H. Bruntt, G. Houdek, D. W. Kurtz, P. Lenz, A. Kaiser, J. Van Cleve, C. Allen & B. D. Clarke. In: Nature, September 14, 2011.
DOI:10.1038/nature10389.
Abstract: http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10389.html
Wissenschaftlicher Kontakt
Mag.a Victoria Antoci
Institut für Astronomie
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-4277-518 22
victoria.antoci@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics