Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bevölkerungsexplosion der Sterne

14.03.2013
Mit den ALMA-Antennen beobachten Astronomen Starburst-Galaxien im frühen All – und entdecken das fernste Wasser

Die höchsten Geburtsraten unter den Sternen lassen sich um mindestens eine Milliarde Jahre früher verzeichnen als bisher angenommen. Das haben Beobachtungen mit dem Atacama Large Millimeter/submillimeter Array (ALMA) ergeben, das am 13. März offiziell eröffnet wird.


Quartett ferner Galaxien: In diesen Bildern sind ALMA-Daten (rot) mit Bildinformationen des Weltraumteleskops Hubble kombiniert. Sie zeigen die fernen Hintergrundgalaxien, die vom Gravitationslinseneffekt verzerrt werden. Ursache dieser Verzerrungen sind Vordergrundgalaxien (Hubble-Daten, blau). Die Hintergrundgalaxien werden zu Lichtbögen verzogen, welche die Vordergrundgalaxien umgeben.
ALMA (ESO/NRAO/NAOJ), Y. Hezaveh et al


Gebogener Strahlengang: Die schematische Darstellung zeigt, wie sich der Lichtweg einer fernen Galaxie im Schwerefeld einer näher gelegenen Vordergrundgalaxie verändert, die als Linse fungiert und so die ferne Galaxie heller, aber verzerrt aussehen lässt. Dabei entstehen charakteristische ringförmige Strukturen, sogenannte Einsteinringe. Die Analyse der Verzerrungen hat ergeben, dass einige der fernen Starburstgalaxien bis zu 40 Billionen (40 Millionen Millionen) mal so hell sind wie unsere Sonne. Hinzu kommt ein Verstärkungseffekt um einen Faktor von bis zu 22.
ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Die Ergebnisse sind soeben in einer Reihe von drei Fachartikeln erschienen, die unter anderem über den Nachweis von Wasser in der bis jetzt größten bekannten Entfernung berichten. Erstautor einer der Veröffentlichungen ist Axel Weiß vom Bonner Max-Planck-Institut für Radioastronomie.

Sterne entstehen in Schüben. Während eines solchen Ausbruchs, „Starburst“ genannt, setzen Galaxien mit hoher Geschwindigkeit gewaltige Mengen von kosmischem Gas und Staub in neue Sonnen um. Dieser Prozess erfolgt viele hundert Mal schneller als in normalen Galaxien wie etwa unserer Milchstraße. Ein Blick weit hinaus in die Tiefen des Universums und damit gleichzeitig zurück in dessen Vergangenheit erfasst Galaxien, deren Licht viele Milliarden Jahre unterwegs ist, ehe es die Erde erreicht. Auf diese Weise erhalten die Astronomen Zugang zur stürmischen Jugend des Alls.

„Je weiter so eine Galaxie entfernt ist, desto weiter schauen wir zurück in die Vergangenheit“, sagt Joaquin Vieira vom California Institute of Technology in den USA, der Leiter des Forschungsprojekts und Erstautor der Veröffentlichung in Nature. „Damit können wir eine Zeitleiste zusammenfügen, die uns zeigt, mit welcher Heftigkeit das Universum im Verlauf seiner inzwischen fast 14 Milliarden Jahre dauernden Geschichte neue Sterne gebildet hat.“

Das international besetzte Team hatte diese weit entfernten, rätselhaften Galaxien mit starker Sternentstehung zunächst mit dem South Pole Telescope (SPT) entdeckt, einem 10-Meter-Radioteleskop der US-amerikanischen National Science Foundation am Südpol. Anschließend hatten die Forscher detaillierte Beobachtungen mit ALMA angestellt, um die hohe Geburtenrate von Sternen im frühen Universum eingehend zu erforschen.

Die Astronomen waren überrascht, als sie herausfanden, dass viele dieser staubreichen Galaxien mit hoher Sternentstehungsrate in noch größerer Entfernung stehen als erwartet. Das bedeutet, dass sich die heftigsten Sternentstehungsausbrüche im Durchschnitt vor zwölf Milliarden Jahren ereigneten, als das All noch keine zwei Milliarden Jahre alt war – eine Milliarde Jahre früher als ursprünglich angenommen.

Zwei der beobachteten Galaxien sind die am weitesten entfernten Vertreter ihrer Art und tatsächlich so weit weg, dass die heute von ihnen beobachtete Strahlung ihre Reise begann, als der Kosmos noch keine Milliarde Jahre alt war. Darüber hinaus wiesen die Astronomen in einer dieser rekordverdächtigen Galaxien Wassermoleküle nach: das entfernteste Wasser, das jemals beobachtet wurde.

Die Wissenschaftler haben die einzigartige Empfindlichkeit von ALMA dazu eingesetzt, die Signale von 26 dieser Galaxien bei einer Wellenlänge von drei Millimetern zu erfassen. Die Strahlung wird von Gasmolekülen in den Galaxien bei ganz bestimmten charakteristischen Wellenlängen hervorgerufen. Während der Milliarden von Jahren, die das Signal zu uns unterwegs ist, werden die Wellenlängen durch die Expansion des Raums auseinandergezogen.

Die Forscher messen diese kosmische Rotverschiebung und berechnen daraus, wie lange die Strahlung durch das Weltall gereist ist. Auf diese Weise können sie jeder Galaxie den richtigen Platz in der Geschichte des Universums zuweisen.

„Die Empfindlichkeit von ALMA und der große Wellenlängenbereich, den wir gleichzeitig erfassen können, bedeutet für uns, dass wir für jede Galaxie nur wenige Minuten Messzeit benötigen – das ist hundert Mal schneller, als das vorher möglich war“, sagt Axel Weiß vom Bonner Max-Planck-Institut für Radioastronomie, der das Projekt zur Entfernungsbestimmung geleitet hat. „In den Zeiten vor ALMA bedeutete eine derartige Messung einen ziemlich zeitaufwändigen Prozess, bei dem Beobachtungsdaten von optischen und von Radioteleskopen miteinander verknüpft werden mussten.“

Bei den meisten Galaxien ließ sich die Entfernung allein über die ALMA-Beobachtungen ermitteln, in einigen Fällen kombinierte das Team die ALMA-Daten aber noch zusätzlich mit Messungen von anderen Teleskopen, darunter auch das Atacama Pathfinder Experiment (APEX) und das Very Large Telescope (VLT) der ESO.

Für diese Studie haben die Astronomen nur einen Teil von ALMA genutzt, nämlich 16 der insgesamt 66 großen Antennenschüsseln; die Anlage, 5000 Meter über dem Meeresspiegel auf dem abgelegenen Chajnantor-Plateau in den chilenischen Anden gelegen, befand sich noch im Bau.

Nicht zuletzt aus diesem Grund haben sich die Astronomen bisher auf die helleren Galaxien konzentriert – und dabei die Natur genutzt: den Gravitationslinseneffekt. Dieses Phänomen, von Einsteins Allgemeiner Relativitätstheorie vorhergesagt, verzerrt die Abbilder einer fernen Galaxie durch den Einfluss des Schwerefelds einer näher gelegenen Vordergrundgalaxie. Das Objekt im Vordergrund verhält sich dabei wie eine Art Linse, welche die ferne Galaxie zudem heller erscheinen lässt.

Um präzise nachvollziehen zu können, wie stark der Gravitationslinseneffekt die Galaxien aufgehellt hat, haben die Wissenschaftler zusätzliche ALMA-Beobachtungen bei Wellenlängen um die 0,9 Millimeter vorgenommen, die besonders scharfe Aufnahmen geliefert haben.

„Diese wunderschönen ALMA-Bilder zeigen uns, wie die Hintergrundgalaxien sich zu Lichtbögen verformen, die die Vordergrundgalaxien umgeben, sogenannte Einsteinringe“, erklärt Yashar Hezaveh von der McGill University im kanadischen Montreal, der die Studie zum Gravitationslinseneffekt geleitet hat. „Wir verwenden sozusagen die gigantischen Mengen Dunkler Materie, welche die Galaxien überall im Universum umgibt, als kosmische Teleskope. Dadurch erscheinen die Systeme größer und heller.”

Die Analyse der Verzerrungen hat ergeben, dass einige der fernen Starburstgalaxien bis zu 40 Billionen (40 Millionen Millionen) mal so hell leuchten wie unsere Sonne. Hinzu kommt ein Verstärkungseffekt um einen Faktor von bis zu 22.

„Bisher ließen sich nur wenige Galaxien, bei denen der Gravitationslinseneffekt eine Rolle spielt, bei Submillimeterwellenlängen nachweisen. Aber jetzt haben das SPT und ALMA gleich mehrere Dutzend davon ausfindig gemacht”, sagt Carlos De Breuck von der ESO. Diese Art von Untersuchungen seien bisher hauptsächlich im sichtbaren Licht durchgeführt worden, etwa mit dem Weltraumteleskop Hubble. „Unsere Ergebnisse zeigen, dass ALMA auf diesem Gebiet eine Menge zu leisten vermag.”

Originalpublikationen:
A. Weiss et al.
ALMA redshifts of millimeter-selected galaxies from the SPT survey: The redshift distribution of dusty star-forming galaxies

Astrophysical Journal, 14. März 2013

J. Vieira et al.
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing

Nature, 14. März 2013

Y. Hezaveh et al.
ALMA observations of strongly lensed dusty star-forming galaxies
Astrophysical Journal, 14. März 2013
Kontakt:
Prof. hon. Dr. Karl M. Menten
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-297
E-Mail: kmenten@­mpifr-bonn.mpg.de
Dr. Axel Weiß
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-273
E-Mail: aweiss@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Press and Public Relations
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-399
E-Mail: njunkes@­mpifr-bonn.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://­www.mpifr-bonn.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics