Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bevölkerungsexplosion der Sterne

14.03.2013
Mit den ALMA-Antennen beobachten Astronomen Starburst-Galaxien im frühen All – und entdecken das fernste Wasser

Die höchsten Geburtsraten unter den Sternen lassen sich um mindestens eine Milliarde Jahre früher verzeichnen als bisher angenommen. Das haben Beobachtungen mit dem Atacama Large Millimeter/submillimeter Array (ALMA) ergeben, das am 13. März offiziell eröffnet wird.


Quartett ferner Galaxien: In diesen Bildern sind ALMA-Daten (rot) mit Bildinformationen des Weltraumteleskops Hubble kombiniert. Sie zeigen die fernen Hintergrundgalaxien, die vom Gravitationslinseneffekt verzerrt werden. Ursache dieser Verzerrungen sind Vordergrundgalaxien (Hubble-Daten, blau). Die Hintergrundgalaxien werden zu Lichtbögen verzogen, welche die Vordergrundgalaxien umgeben.
ALMA (ESO/NRAO/NAOJ), Y. Hezaveh et al


Gebogener Strahlengang: Die schematische Darstellung zeigt, wie sich der Lichtweg einer fernen Galaxie im Schwerefeld einer näher gelegenen Vordergrundgalaxie verändert, die als Linse fungiert und so die ferne Galaxie heller, aber verzerrt aussehen lässt. Dabei entstehen charakteristische ringförmige Strukturen, sogenannte Einsteinringe. Die Analyse der Verzerrungen hat ergeben, dass einige der fernen Starburstgalaxien bis zu 40 Billionen (40 Millionen Millionen) mal so hell sind wie unsere Sonne. Hinzu kommt ein Verstärkungseffekt um einen Faktor von bis zu 22.
ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Die Ergebnisse sind soeben in einer Reihe von drei Fachartikeln erschienen, die unter anderem über den Nachweis von Wasser in der bis jetzt größten bekannten Entfernung berichten. Erstautor einer der Veröffentlichungen ist Axel Weiß vom Bonner Max-Planck-Institut für Radioastronomie.

Sterne entstehen in Schüben. Während eines solchen Ausbruchs, „Starburst“ genannt, setzen Galaxien mit hoher Geschwindigkeit gewaltige Mengen von kosmischem Gas und Staub in neue Sonnen um. Dieser Prozess erfolgt viele hundert Mal schneller als in normalen Galaxien wie etwa unserer Milchstraße. Ein Blick weit hinaus in die Tiefen des Universums und damit gleichzeitig zurück in dessen Vergangenheit erfasst Galaxien, deren Licht viele Milliarden Jahre unterwegs ist, ehe es die Erde erreicht. Auf diese Weise erhalten die Astronomen Zugang zur stürmischen Jugend des Alls.

„Je weiter so eine Galaxie entfernt ist, desto weiter schauen wir zurück in die Vergangenheit“, sagt Joaquin Vieira vom California Institute of Technology in den USA, der Leiter des Forschungsprojekts und Erstautor der Veröffentlichung in Nature. „Damit können wir eine Zeitleiste zusammenfügen, die uns zeigt, mit welcher Heftigkeit das Universum im Verlauf seiner inzwischen fast 14 Milliarden Jahre dauernden Geschichte neue Sterne gebildet hat.“

Das international besetzte Team hatte diese weit entfernten, rätselhaften Galaxien mit starker Sternentstehung zunächst mit dem South Pole Telescope (SPT) entdeckt, einem 10-Meter-Radioteleskop der US-amerikanischen National Science Foundation am Südpol. Anschließend hatten die Forscher detaillierte Beobachtungen mit ALMA angestellt, um die hohe Geburtenrate von Sternen im frühen Universum eingehend zu erforschen.

Die Astronomen waren überrascht, als sie herausfanden, dass viele dieser staubreichen Galaxien mit hoher Sternentstehungsrate in noch größerer Entfernung stehen als erwartet. Das bedeutet, dass sich die heftigsten Sternentstehungsausbrüche im Durchschnitt vor zwölf Milliarden Jahren ereigneten, als das All noch keine zwei Milliarden Jahre alt war – eine Milliarde Jahre früher als ursprünglich angenommen.

Zwei der beobachteten Galaxien sind die am weitesten entfernten Vertreter ihrer Art und tatsächlich so weit weg, dass die heute von ihnen beobachtete Strahlung ihre Reise begann, als der Kosmos noch keine Milliarde Jahre alt war. Darüber hinaus wiesen die Astronomen in einer dieser rekordverdächtigen Galaxien Wassermoleküle nach: das entfernteste Wasser, das jemals beobachtet wurde.

Die Wissenschaftler haben die einzigartige Empfindlichkeit von ALMA dazu eingesetzt, die Signale von 26 dieser Galaxien bei einer Wellenlänge von drei Millimetern zu erfassen. Die Strahlung wird von Gasmolekülen in den Galaxien bei ganz bestimmten charakteristischen Wellenlängen hervorgerufen. Während der Milliarden von Jahren, die das Signal zu uns unterwegs ist, werden die Wellenlängen durch die Expansion des Raums auseinandergezogen.

Die Forscher messen diese kosmische Rotverschiebung und berechnen daraus, wie lange die Strahlung durch das Weltall gereist ist. Auf diese Weise können sie jeder Galaxie den richtigen Platz in der Geschichte des Universums zuweisen.

„Die Empfindlichkeit von ALMA und der große Wellenlängenbereich, den wir gleichzeitig erfassen können, bedeutet für uns, dass wir für jede Galaxie nur wenige Minuten Messzeit benötigen – das ist hundert Mal schneller, als das vorher möglich war“, sagt Axel Weiß vom Bonner Max-Planck-Institut für Radioastronomie, der das Projekt zur Entfernungsbestimmung geleitet hat. „In den Zeiten vor ALMA bedeutete eine derartige Messung einen ziemlich zeitaufwändigen Prozess, bei dem Beobachtungsdaten von optischen und von Radioteleskopen miteinander verknüpft werden mussten.“

Bei den meisten Galaxien ließ sich die Entfernung allein über die ALMA-Beobachtungen ermitteln, in einigen Fällen kombinierte das Team die ALMA-Daten aber noch zusätzlich mit Messungen von anderen Teleskopen, darunter auch das Atacama Pathfinder Experiment (APEX) und das Very Large Telescope (VLT) der ESO.

Für diese Studie haben die Astronomen nur einen Teil von ALMA genutzt, nämlich 16 der insgesamt 66 großen Antennenschüsseln; die Anlage, 5000 Meter über dem Meeresspiegel auf dem abgelegenen Chajnantor-Plateau in den chilenischen Anden gelegen, befand sich noch im Bau.

Nicht zuletzt aus diesem Grund haben sich die Astronomen bisher auf die helleren Galaxien konzentriert – und dabei die Natur genutzt: den Gravitationslinseneffekt. Dieses Phänomen, von Einsteins Allgemeiner Relativitätstheorie vorhergesagt, verzerrt die Abbilder einer fernen Galaxie durch den Einfluss des Schwerefelds einer näher gelegenen Vordergrundgalaxie. Das Objekt im Vordergrund verhält sich dabei wie eine Art Linse, welche die ferne Galaxie zudem heller erscheinen lässt.

Um präzise nachvollziehen zu können, wie stark der Gravitationslinseneffekt die Galaxien aufgehellt hat, haben die Wissenschaftler zusätzliche ALMA-Beobachtungen bei Wellenlängen um die 0,9 Millimeter vorgenommen, die besonders scharfe Aufnahmen geliefert haben.

„Diese wunderschönen ALMA-Bilder zeigen uns, wie die Hintergrundgalaxien sich zu Lichtbögen verformen, die die Vordergrundgalaxien umgeben, sogenannte Einsteinringe“, erklärt Yashar Hezaveh von der McGill University im kanadischen Montreal, der die Studie zum Gravitationslinseneffekt geleitet hat. „Wir verwenden sozusagen die gigantischen Mengen Dunkler Materie, welche die Galaxien überall im Universum umgibt, als kosmische Teleskope. Dadurch erscheinen die Systeme größer und heller.”

Die Analyse der Verzerrungen hat ergeben, dass einige der fernen Starburstgalaxien bis zu 40 Billionen (40 Millionen Millionen) mal so hell leuchten wie unsere Sonne. Hinzu kommt ein Verstärkungseffekt um einen Faktor von bis zu 22.

„Bisher ließen sich nur wenige Galaxien, bei denen der Gravitationslinseneffekt eine Rolle spielt, bei Submillimeterwellenlängen nachweisen. Aber jetzt haben das SPT und ALMA gleich mehrere Dutzend davon ausfindig gemacht”, sagt Carlos De Breuck von der ESO. Diese Art von Untersuchungen seien bisher hauptsächlich im sichtbaren Licht durchgeführt worden, etwa mit dem Weltraumteleskop Hubble. „Unsere Ergebnisse zeigen, dass ALMA auf diesem Gebiet eine Menge zu leisten vermag.”

Originalpublikationen:
A. Weiss et al.
ALMA redshifts of millimeter-selected galaxies from the SPT survey: The redshift distribution of dusty star-forming galaxies

Astrophysical Journal, 14. März 2013

J. Vieira et al.
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing

Nature, 14. März 2013

Y. Hezaveh et al.
ALMA observations of strongly lensed dusty star-forming galaxies
Astrophysical Journal, 14. März 2013
Kontakt:
Prof. hon. Dr. Karl M. Menten
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-297
E-Mail: kmenten@­mpifr-bonn.mpg.de
Dr. Axel Weiß
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-273
E-Mail: aweiss@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Press and Public Relations
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-399
E-Mail: njunkes@­mpifr-bonn.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://­www.mpifr-bonn.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie