Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bestimmung der Quantengeometrie eines Kristalls

06.11.2013
LMU/MPQ-Physiker messen erstmals geometrische Eigenschaften von Energiebändern in Lichtkristallen.

Geometrische Phasen treten in der Natur in vielfältigen Formen auf. Ein besonders anschauliches Beispiel ist das Focault’sche Pendel - eine an einem langen Seil befestigte, frei schwingende Kugel. Wegen der Erdrotation dreht sich ihre Schwingungsebene relativ zur Erde jeden Tag um einen kleinen „geometrischen“ Winkel.


Abbildung 1

Dieser ist durch die sphärische Form der Erde gegeben und hängt daher von der geographischen Breite ab. Ein ähnlicher Effekt wurde in der Quantenmechanik 1984 vom englischen Physiker Sir Michael Berry entdeckt - eine geometrische Phase, die heute als „Berry-Phase“ bekannt ist.

Diese quantenmechanischen Phasen können einen großen Einfluss auf Materialeigenschaften haben und sind für eine Reihe von Phänomenen verantwortlich. Einige Beispiele dafür sind die dielektrische Polarisierung oder der Quanten-Hall-Effekt, wobei letzterer heutzutage benutzt wird um den Standardwiderstand festzulegen.

Nun gelang es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Ludwig-Maximilians-Universität München und Max-Planck-Institut für Quantenoptik, Garching) in enger Zusammenarbeit mit theoretischen Physikern der Harvard Universität um Prof. Eugene Demler zum ersten Mal eine solche Phase in einem eindimensionalen festkörperähnlichen System zu messen. Diese Phase wird hier als “Zak-Phase“ bezeichnet, benannt nach dem israelischen Physiker Joshua Zak (Nature Physics, AOP DOI:10.1038/nphys2790).

Zwei Objekte haben eine unterschiedliche topologische Struktur, wenn es keine Möglichkeit gibt sie ineinander überzuführen, ohne sie zu zerschneiden oder Löcher zu stanzen. In diesem Sinne sind beispielsweise eine Kaffeetasse mit einem Loch im Henkel und ein Bagel mit einem Loch in der Mitte topologisch äquivalent - ein Bagel und ein Fußball dagegen nicht. Die verschiedenen topologischen Strukturen können durch geometrische Phasen charakterisiert werden, die von der jeweiligen Form des Objektes abhängen.

Was jedoch hat eine solche Phase mit den Eigenschaften eines Materials zu tun? „In Festkörpern ordnen sich Ionen zu einer periodischen Struktur an und die Elektronen spüren deren elektromagnetische Kraft. Das führt dazu, dass die Elektronen im Material nur bestimmte erlaubte Energien annehmen können, sogenannte Energiebänder – diese spielen die Rolle der Objekte in den oben genannten Beispielen“, erklärt Marcos Atala, ein Wissenschaftler im Team von Prof. Bloch.

1989 erkannte der israelische Physiker Joshua Zak die Bedeutung von geometrischen Phasen im Bändermodell von eindimensionalen Festkörpern: wenn sich ein Teilchen entlang einer geschlossenen Bahn im Energieband bewegt, sammelt es eine geometrische Phase auf, welche erstaunliche Auswirkungen auf bestimmte Materialeigenschaften haben kann. Beispiele dafür sind unter anderem die Lichtdurchlässigkeit, die elektrische Leitfähigkeit, oder die Wechselwirkung mit magnetischen Feldern. Viele dieser Eigenschaften können mithilfe der „Quantengeometrie“ des Kristalls beschrieben werden. Das Bestimmen der topologischen Eigenschaften eines Energiebandes ist deshalb von großer Bedeutung für das Verständnis der physikalischen Eigenschaften von Materialien.

In ihren Experimenten laden die Wissenschaftler ein extrem kaltes Gas aus Rubidium-Atomen in ein optisches Gitter. Das ist eine periodische Anordnung von hellen und dunklen Bereichen, welche durch die Interferenz gegenläufiger Laserstrahlen entstehen. Abhängig von der Wellenlänge des Lichtes halten sich die Atome entweder in den hellen oder in den dunklen Gebieten auf und ordnen sich auf diese Weise von selbst zu einem regelmäßigen Muster an. Dieser Lichtkristall ähnelt in seiner Struktur einfachen Festkörpern, wobei die Atome die Rolle der Elektronen spielen. Überlagert man dem Lichtgitter ein zusätzliches Lichtfeld, dessen Periode genau zwei Gitterabständen entspricht, so entsteht eine Art „Übergitter“, in dem sich hohe und niedrige Energiebarrieren regelmäßig abwechseln, ähnlich wie bei einem Polyazetylen-Molekül, welches trotz seiner Einfachheit ein vielfältiges Spektrum an toplogischen Eigenschaften besitzt.

Um die Zak-Phase zu messen, implementierten die Münchner Wissenschaftler ein experimentelles Protokoll, das von den theoretischen Physikern um den Harvard-Professor Eugene Demler entwickelt wurde. Die zugrundeliegende Idee hat große Ähnlichkeit mit einem optischen Interferometer. Dabei wird ein Laserstrahl in zwei Teile aufgespalten, von denen jeder einen anderen Weg zurücklegt. Am Ende werden die beiden Strahlen wieder zusammengeführt. Ihre Interferenz resultiert in einem Muster, dessen Phase von der jeweiligen Phase abhängt, welche die beiden Strahlen auf ihren Wegen aufgesammelt haben. Analog dazu machen sich die Wissenschaftler in ihren Experimenten die Gesetze der Quantenmechanik zunutze. Diese erlauben es einem einzelnen Teilchen sich in zwei Zuständen gleichzeitig zu befinden. In ihren Experimenten präparieren sie einzelne Atome in einer Überlagerung von zwei Spin-Zuständen, Spin-up und Spin-down. Eine vom Spin abhängige äußere Kraft wirkt entgegengesetzt auf die beiden Zustände, wodurch sich die beiden Komponenten im Energieband in entgegengesetzte Richtungen bewegen (Abb. 1). Die beiden Zustände sammeln auf ihrem Weg eine Zak-Phase auf, welche durch die Quantengeometrie des Kristalls bestimmt ist. Ähnlich wie bei einem optischen Interferometer war es den Wissenschaftlern schließlich möglich den Wert der Zak-Phase durch Interferenz der Spin-Komponenten zu messen.

Bisher konnten die geometrischen Phasen in Festkörpern nur indirekt mit voll besetzten Energiebändern bestimmt werden, d.h. jeder Quantenzustand des Bandes musste besetzt sein. Mit der neuen Methode ist diese Messung mit nur einem einzigen Teilchen möglich. Dieses muss langsam durch das Energieband bewegt werden, sodass es den Effekt der Quantengeometrie des Kristalls spürt. Das Team um Eugene Demler entwickelte darüber hinaus Methoden, die es erlauben dieses Protokoll auf höher-dimensionale und wechselwirkende Vielteilchensysteme auszuweiten. „Unser neues Messverfahren etabliert einen allgemeinen neuen Ansatz, die toplogischen Strukturen von Energiebändern in Festkörpern zu untersuchen“, erläutert Immanuel Bloch.

Diese neuen Messverfahren könnten zur Entdeckung und Charakterisierung neuer topologischer Phasen in Quantenmaterialien mit einzigartigen Eigenschaften führen, die eventuell in Zukunft für praktische Anwendungen von Nutzen sein könnten.

Abbildung 1: Schematische Darstellung eines Teilchens, das sich innerhalb des Energiebandes bewegt. Spin-up und spin-down Zustände sind in blau bzw. rot dargestellt. Während des Experiments bewegen sich die Atome von der Mitte des Energiebandes zu dessen Kanten. Dabei sammelt das Teilchen eine geometrische Phase - die Zak-Phase - auf. Der blaue Hintergrund illustriert das im Experiment verwendete optische Übergitter.

Original Veröffentlichung

Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa,
Eugene Demler and Immanuel Bloch
Direct measurement of the Zak phase in topological Bloch bands
Nature Physics, AOP DOI:10.1038/nphys2790
Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Eugene Demler
Lyman Laboratory, Department of Physics,
Harvard University, 17 Oxford St.,
Cambridge, MA 02138
Telefon: (617) 496-1045
E-Mail: demler@physics.harvard.edu
Dipl. Phys. Marcos Atala
LMU München
Telefon: +49 89 2180 6133
E-Mail: marcos.atala@physik.uni-muenchen.de
Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise