Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bestimmung der Quantengeometrie eines Kristalls

06.11.2013
LMU/MPQ-Physiker messen erstmals geometrische Eigenschaften von Energiebändern in Lichtkristallen.

Geometrische Phasen treten in der Natur in vielfältigen Formen auf. Ein besonders anschauliches Beispiel ist das Focault’sche Pendel - eine an einem langen Seil befestigte, frei schwingende Kugel. Wegen der Erdrotation dreht sich ihre Schwingungsebene relativ zur Erde jeden Tag um einen kleinen „geometrischen“ Winkel.


Abbildung 1

Dieser ist durch die sphärische Form der Erde gegeben und hängt daher von der geographischen Breite ab. Ein ähnlicher Effekt wurde in der Quantenmechanik 1984 vom englischen Physiker Sir Michael Berry entdeckt - eine geometrische Phase, die heute als „Berry-Phase“ bekannt ist.

Diese quantenmechanischen Phasen können einen großen Einfluss auf Materialeigenschaften haben und sind für eine Reihe von Phänomenen verantwortlich. Einige Beispiele dafür sind die dielektrische Polarisierung oder der Quanten-Hall-Effekt, wobei letzterer heutzutage benutzt wird um den Standardwiderstand festzulegen.

Nun gelang es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Ludwig-Maximilians-Universität München und Max-Planck-Institut für Quantenoptik, Garching) in enger Zusammenarbeit mit theoretischen Physikern der Harvard Universität um Prof. Eugene Demler zum ersten Mal eine solche Phase in einem eindimensionalen festkörperähnlichen System zu messen. Diese Phase wird hier als “Zak-Phase“ bezeichnet, benannt nach dem israelischen Physiker Joshua Zak (Nature Physics, AOP DOI:10.1038/nphys2790).

Zwei Objekte haben eine unterschiedliche topologische Struktur, wenn es keine Möglichkeit gibt sie ineinander überzuführen, ohne sie zu zerschneiden oder Löcher zu stanzen. In diesem Sinne sind beispielsweise eine Kaffeetasse mit einem Loch im Henkel und ein Bagel mit einem Loch in der Mitte topologisch äquivalent - ein Bagel und ein Fußball dagegen nicht. Die verschiedenen topologischen Strukturen können durch geometrische Phasen charakterisiert werden, die von der jeweiligen Form des Objektes abhängen.

Was jedoch hat eine solche Phase mit den Eigenschaften eines Materials zu tun? „In Festkörpern ordnen sich Ionen zu einer periodischen Struktur an und die Elektronen spüren deren elektromagnetische Kraft. Das führt dazu, dass die Elektronen im Material nur bestimmte erlaubte Energien annehmen können, sogenannte Energiebänder – diese spielen die Rolle der Objekte in den oben genannten Beispielen“, erklärt Marcos Atala, ein Wissenschaftler im Team von Prof. Bloch.

1989 erkannte der israelische Physiker Joshua Zak die Bedeutung von geometrischen Phasen im Bändermodell von eindimensionalen Festkörpern: wenn sich ein Teilchen entlang einer geschlossenen Bahn im Energieband bewegt, sammelt es eine geometrische Phase auf, welche erstaunliche Auswirkungen auf bestimmte Materialeigenschaften haben kann. Beispiele dafür sind unter anderem die Lichtdurchlässigkeit, die elektrische Leitfähigkeit, oder die Wechselwirkung mit magnetischen Feldern. Viele dieser Eigenschaften können mithilfe der „Quantengeometrie“ des Kristalls beschrieben werden. Das Bestimmen der topologischen Eigenschaften eines Energiebandes ist deshalb von großer Bedeutung für das Verständnis der physikalischen Eigenschaften von Materialien.

In ihren Experimenten laden die Wissenschaftler ein extrem kaltes Gas aus Rubidium-Atomen in ein optisches Gitter. Das ist eine periodische Anordnung von hellen und dunklen Bereichen, welche durch die Interferenz gegenläufiger Laserstrahlen entstehen. Abhängig von der Wellenlänge des Lichtes halten sich die Atome entweder in den hellen oder in den dunklen Gebieten auf und ordnen sich auf diese Weise von selbst zu einem regelmäßigen Muster an. Dieser Lichtkristall ähnelt in seiner Struktur einfachen Festkörpern, wobei die Atome die Rolle der Elektronen spielen. Überlagert man dem Lichtgitter ein zusätzliches Lichtfeld, dessen Periode genau zwei Gitterabständen entspricht, so entsteht eine Art „Übergitter“, in dem sich hohe und niedrige Energiebarrieren regelmäßig abwechseln, ähnlich wie bei einem Polyazetylen-Molekül, welches trotz seiner Einfachheit ein vielfältiges Spektrum an toplogischen Eigenschaften besitzt.

Um die Zak-Phase zu messen, implementierten die Münchner Wissenschaftler ein experimentelles Protokoll, das von den theoretischen Physikern um den Harvard-Professor Eugene Demler entwickelt wurde. Die zugrundeliegende Idee hat große Ähnlichkeit mit einem optischen Interferometer. Dabei wird ein Laserstrahl in zwei Teile aufgespalten, von denen jeder einen anderen Weg zurücklegt. Am Ende werden die beiden Strahlen wieder zusammengeführt. Ihre Interferenz resultiert in einem Muster, dessen Phase von der jeweiligen Phase abhängt, welche die beiden Strahlen auf ihren Wegen aufgesammelt haben. Analog dazu machen sich die Wissenschaftler in ihren Experimenten die Gesetze der Quantenmechanik zunutze. Diese erlauben es einem einzelnen Teilchen sich in zwei Zuständen gleichzeitig zu befinden. In ihren Experimenten präparieren sie einzelne Atome in einer Überlagerung von zwei Spin-Zuständen, Spin-up und Spin-down. Eine vom Spin abhängige äußere Kraft wirkt entgegengesetzt auf die beiden Zustände, wodurch sich die beiden Komponenten im Energieband in entgegengesetzte Richtungen bewegen (Abb. 1). Die beiden Zustände sammeln auf ihrem Weg eine Zak-Phase auf, welche durch die Quantengeometrie des Kristalls bestimmt ist. Ähnlich wie bei einem optischen Interferometer war es den Wissenschaftlern schließlich möglich den Wert der Zak-Phase durch Interferenz der Spin-Komponenten zu messen.

Bisher konnten die geometrischen Phasen in Festkörpern nur indirekt mit voll besetzten Energiebändern bestimmt werden, d.h. jeder Quantenzustand des Bandes musste besetzt sein. Mit der neuen Methode ist diese Messung mit nur einem einzigen Teilchen möglich. Dieses muss langsam durch das Energieband bewegt werden, sodass es den Effekt der Quantengeometrie des Kristalls spürt. Das Team um Eugene Demler entwickelte darüber hinaus Methoden, die es erlauben dieses Protokoll auf höher-dimensionale und wechselwirkende Vielteilchensysteme auszuweiten. „Unser neues Messverfahren etabliert einen allgemeinen neuen Ansatz, die toplogischen Strukturen von Energiebändern in Festkörpern zu untersuchen“, erläutert Immanuel Bloch.

Diese neuen Messverfahren könnten zur Entdeckung und Charakterisierung neuer topologischer Phasen in Quantenmaterialien mit einzigartigen Eigenschaften führen, die eventuell in Zukunft für praktische Anwendungen von Nutzen sein könnten.

Abbildung 1: Schematische Darstellung eines Teilchens, das sich innerhalb des Energiebandes bewegt. Spin-up und spin-down Zustände sind in blau bzw. rot dargestellt. Während des Experiments bewegen sich die Atome von der Mitte des Energiebandes zu dessen Kanten. Dabei sammelt das Teilchen eine geometrische Phase - die Zak-Phase - auf. Der blaue Hintergrund illustriert das im Experiment verwendete optische Übergitter.

Original Veröffentlichung

Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa,
Eugene Demler and Immanuel Bloch
Direct measurement of the Zak phase in topological Bloch bands
Nature Physics, AOP DOI:10.1038/nphys2790
Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Eugene Demler
Lyman Laboratory, Department of Physics,
Harvard University, 17 Oxford St.,
Cambridge, MA 02138
Telefon: (617) 496-1045
E-Mail: demler@physics.harvard.edu
Dipl. Phys. Marcos Atala
LMU München
Telefon: +49 89 2180 6133
E-Mail: marcos.atala@physik.uni-muenchen.de
Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie