Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transatlantische Forschungsverbindung in der Astronomie

07.12.2007
Internationales Abkommen verbessert die Zusammenarbeit zwischen zwei weltweit führenden Instituten in der Radioastronomie

Zwei weltweit führende radioastronomische Forschungseinrichtungen haben ein Abkommen zur wissenschaftlichen und technischen Kooperation auf dem Gebiet der Radioastronomie unterzeichnet. Damit vereinbaren das National Radio Astronomy Observatory (NRAO) in den USA und das Max-Planck-Institut für Radioastronomie in Deutschland eine Reihe von gemeinsamen zukünftigen Projekten, sowohl bei der technischen Weiterentwicklung der Teleskope als auch bei der wissenschaftlichen Zusammenarbeit zwischen den Partnern.


Das Robert-C.-Byrd-Radioteleskop des NRAO und das 100-m-Radioteleskop des Max-Planck-Instituts für Radioastronomie, die zwei größten voll beweglichen Radioteleskope weltweit. Bild: Max-Planck-Institut für Radioastronomie Bonn / NRAO

Das erste gemeinsame Projekt zwischen beiden Instituten umfasst die Beteiligung des Max-Planck-Instituts für Radioastronomie mit einem Beitrag von 299.000 US$ bei der Weiterentwicklung von Empfängern zur Aufnahme von Radiostrahlung in einem Frequenzbereich von 22 Gigahertz (GHz) für alle zehn Teleskope des VLBA-Netzwerks. Dadurch wird die Vielfalt wissenschaftlicher Forschung mit dem VLBA nochmals erweitert. Dieser Empfangsbereich ist von speziellem Interesse für Forschungsprojekte in der Kosmologie und solch rätselhafte Phänomene wie Blazare im Gammastrahlungsbereich.

"Das neue Abkommen erfolgt im Rahmen einer langjährigen Zusammenarbeit zwischen unseren Instituten und betont die Bedeutung von internationalen Kollaborationen für die Zukunft astronomischer Forschung", sagt Fred K.Y. Lo, der Direktor des NRAO.

... mehr zu:
»NRAO »Radioastronomie »Radioteleskop »VLBA

"Unsere beiden Institute haben eine Reihe von gemeinsamen Forschungszielen. Die Bündelung von Kräften, um unsere Teleskope technologisch an vorderster Front zu halten, ist von hohem Nutzen für den wissenschaftlichen Fortschritt in unserem Forschungsbereich", so Anton Zensus, geschäftsführender Direktor am Max-Planck-Institut.

Neben dem VLBA betreibt das NRAO das Very Large Array (VLA) in New Mexico und das Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. Das Max-Planck-Institut betreibt das 100-m-Radioteleskop bei Effelsberg in Deutschland und das 12-m-APEX-Teleskop in 5100 m Höhe in der Atacama-Wüste in Chile (zusammen mit der Europäischen Südsternwarte ESO und dem schwedischen Onsala Space Observatory). Als Partner im VLBA-Netzwerk stellt es die transatlantische Ausdehnung zur nochmaligen Vergrößerung der Winkelauflösung zur Verfügung. Beide Institute sind Mitglieder im Betrieb eines globalen Netzwerks von Radioteleskopen (Very Long Baseline Interferometry - VLBI), in dem durch gleichzeitige Radiomessungen mit Teleskopen auf mehreren Kontinenten Bilder mit extrem hoher Auflösung erzeugt werden können. In einem Teil dieses Teleskop-Netzwerks, dem "High-Sensitivity Array" (HSA), werden speziell die großen Radioteleskope eingesetzt, um sehr leuchtschwache kosmische Objekte zu erfassen. Durch Kooperation der NRAO-Teleskope mit dem 100-m-Teleskop Effelsberg ist es möglich, Radiobilder von kosmischen Objekten zu erzeugen, die 100mal schärfer sind als entsprechende optische Aufnahmen mit dem Weltraumteleskop "Hubble".

Beide Institute sind auch Teil einer internationalen Kooperative zum Aufbau und Betrieb des "Atacama Large Millimeter/submillimeter Array" (ALMA) in Chile und beteiligen sich an der Planung des "Square Kilometer Array" (SKA) als internationalem Großprojekt eines Radioteleskops der nächsten Generation.

Im Rahmen der neuen Vereinbarung setzen beide Institute ihre bereits bestehende Zusammenarbeit bei wissenschaftlichen Projekten und Beobachtungen fort und erweitern sie durch die Kooperation bei technologischen Entwicklungen, um die Leistung der Radioteleskope beider Partner vor allem bei kurzen Wellenlängen zu verbessern. Die Zusammenarbeit erstreckt sich ebenfalls auf die Beurteilungen zur Vergabe von Beobachtungszeit an den jeweiligen Radioteleskopen und beinhaltet den offenen Zugang zu Beobachtungszeit auf der Basis eines "Peer Review"-Verfahrens.

Mit der Übereinkunft zwischen NRAO und dem Max-Planck-Institut wird der Empfehlung der amerikanischen "National Science Foundation" (NSF) Rechnung getragen, dass das VLBA in Zukunft vom NRAO gemeinsam mit Partnerinstituten betrieben werden solle. Das Max-Planck-Institut bekräftigt ein starkes Interesse darin, die einmaligen Fähigkeiten des VLBA für wissenschaftliche Forschung nutzen zu können. Der finanzielle Beitrag zum Ausbau des 22GHz-Empfangssystems am VLBA setzt dafür ein starkes Zeichen.

"Mit dem VLBA erreichen wir das höchste Auflösungsvermögen für Abbildungen mit einem astronomischen Forschungsinstrument. Der Beitrag des Max-Planck-Instituts für Radioastronomie zur Verbesserung seiner Fähigkeiten ist eine wichtige Bestätigung für die Rolle des VLBA an der Vorderfront astronomischer Forschung", sagt Fred Lo.

Im ersten gemeinsamen VLBA-Projekt unter der neuen Vereinbarung wird das Max-Planck-Institut für Radioastronomie die Kosten für die Weiterentwicklung der 22GHz-Empfangssysteme übernehmen und das NRAO die entsprechenden Arbeiten durchführen. Die Fertigstellung, mit der Aufrüstung von allen zehn VLBA-Teleskopen, ist für August 2008 geplant.

Die Aufrüstung wird die Empfindlichkeit des 22GHz-Empfangssystems zur Beobachtung von schwachen Radioquellen um 30 Prozent verbessern. Das ermöglicht einen wesentlich besseren Zugang zu einem Schlüsselgebiet moderner astronomischer Forschung. Dabei dienen rotierende Scheiben von Wassermolekülen im Zentralbereich von weit entfernten Galaxien dazu, die Entfernung dieser Galaxien (unabhängig von der Rotverschiebung) sehr genau zu bestimmen. Diese Beobachtungstechnik wurde in den späten Neunzigerjahren erstmals angewandt. Sie ermöglicht eine direkte Entfernungsbestimmung ohne zahlreiche Hilfsannahmen, die in den eher indirekten Methoden zur Entfernungsbestimmung zum Tragen kommen. Die verbesserte Genauigkeit in dieser Methode spielt eine Schlüsselrolle bei der Lösung von Problemen an der Spitze astrophysikalischer Forschung. Das gilt zum Beispiel für die Bestimmung der Natur der mysteriösen "Dunklen Energie", des Antriebs hinter der beschleunigten Expansion des Universums. In diesem Forschungsbereich arbeiten Astronomen beider Institute (Max-Planck-Institut für Radioastronomie und NRAO) zusammen. Für die Beobachtungen werden neben dem VLBA auch das Radioteleskop Effelsberg, das GBT und das VLA eingesetzt.

Das Max-Planck-Institut für Radioastronomie ist eines von 80 Forschungsinstituten der Max-Planck-Gesellschaft zur Förderung der Wissenschaft e.V.; das "National Radio Astronomy Observatory" ist eine Einrichtung der "National Science Foundation" in den USA und wird von der "Associated Universities, Inc." betrieben.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: NRAO Radioastronomie Radioteleskop VLBA

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen