Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanowissenschaft: Schwache Kraft - Starke Wirkung

19.11.2007
Für die Bindung bestimmter organischer Moleküle auf metallischen Oberflächen ist ausschließlich die Van der Waals-Kraft, eine schwache Anziehungskraft, verantwortlich. In einem Modell für organische Bauelemente sorgt allein diese Kraft für die Bindung eines organischen Films auf eine metallene Unterlage.

Diese jetzt in Physical Review Letters veröffentlichten Daten sind das jüngste Ergebnis eines vom Wissenschaftsfonds FWF unterstützen Nationalen Forschungsnetzwerks (NFN). Tatsächlich machen sie die Überarbeitung zahlreicher Berechnungsmodelle für die physikalischen Interaktionen dünner Filme mit ihrem Trägermaterial erforderlich.

Trotz der Erfüllung komplexer Funktionen z. B. als Computerchips sind anorganische Halbleiter einfach aufgebaut, was ihren Anwendungsmöglichkeiten enge Grenzen setzt. Anderes gilt für Halbleiter, die organische Materialien nutzen. Die hohe Flexibilität der organischen Moleküle erlaubt für sie völlig neue Einsatzmöglichkeiten. Doch dieser Vorteil kann nur dann genutzt werden, wenn ihre im Vergleich zu anorganischen Materialien bedeutend höhere Komplexität besser verstanden wird.

Drunter & Drüber
Für die Herstellung organischer Halbleiter werden dünne Filme eines elektrisch leitenden organischen Materials auf eine Trägerfläche aufgebracht. Dabei ist es wichtig, die Wechsel-wirkungen an den Grenzflächen zwischen Trägermaterial und organischem Material zu verstehen. Genau dazu gelang einem Team des Nationalen Forschungsnetzwerks (NFN) "Interface controlled and functionalised organic thin films" an der Montanuniversität Leoben ein wichtiger Beitrag. Durch aufwändige Berechnungen konnte gezeigt werden, dass ein dünner Film aus organischem Thiophen allein durch Van der Waals-Kräfte auf einer Kupferoberfläche gehalten wird. Dabei konnte die Adsorptionsenergie von dem Team mit -0.50 eV berechnet werden.

Der Sprecher des NFN, Prof. Helmut Sitter vom Institut für Halbleiter- und Festkörperphysik der Johannes Kepler Universität (JKU) Linz, erläutert: "Die Van der Waals-Kraft ist eine zwischen Atomen schwach wechselwirkende Kraft, die durch unsymmetrische Ladungsverteilung in den Atomen entsteht. Wie wir jetzt wissen, wird ihr Einfluss bei extrem dünnen Materialfilmen, wie sie zur Herstellung organischer Halbleiter verwendet werden, sehr bedeutend und kann allein zur Bindung zwischen den Materialien ausreichen. Aufgrund ihrer Schwäche wurde sie aber in zahlreichen Methoden, die zur Berechnung der Wechselwirkung verschiedener Materialien verwendet werden, bisher nicht oder nur untergeordnet berücksichtigt." Damit scheint auch eine Erklärung gefunden, warum die häufig für diese Zwecke verwendete "generalized gradient approximation" (GGA) das Bindungsverhalten in dünnen Schichten bisher nicht befriedigend erklären konnte. Tatsächlich könnten diese jetzt veröffentlichten Ergebnisse lang bekannte Diskrepanzen zwischen verschiedenen experimentellen Daten und Berechnungsmodellen für die Wechselwirkung von dünnen Schichten erklären.

Publikationen, Preise, Produkte
Die neuen Daten erweitern das grundlegende Verständnis für die Wechselwirkungen an Grenzflächen. Gleichzeitig zeigt der Einfluss der Van der Waals-Kraft, dass in dem berechneten System keine Ladungen zwischen den Atomen des organischen und des Trägermaterials transferiert werden. Für die Herstellung und Funktion organischer Halbleiter ist das von entscheidender Bedeutung.

Wie nahe an der praktischen Anwendung die TeilnehmerInnen des NFN auch sonst forschen, belegen mehrere Veröffentlichungen in dem Journal Advanced Materials in diesem Jahr. Eine dieser Publikationen führte sogar zur Verleihung des Innovationspreises des Landes Oberösterreich an das Institut für Experimentalphysik der JKU. Da wundert es auch nicht mehr, dass bereits drei Spin-off-Unternehmen auf Grundlage der Erkenntnisse des NFN gegründet wurden, die fast ausschließlich von AbsolventInnen der beteiligten Institute geführt werden. Eines dieser Unternehmen, Nanoident, erhielt von Ernst & Young Österreich die Auszeichnung "Entrepreneur Of The Year 2007".

All dies ist zusammen mit einer Veröffentlichung des NFN in SCIENCE im Sommer dieses Jahres für Prof. Sitter ein schöner Beleg für die erfolgreiche Integration von Grundlagenforschung, angewandter Forschung und Technologietransfer im Rahmen eines vom FWF geförderten Nationalen Forschungsnetzwerks.
Originalpublikation: Importance of Van Der Waals Interaction for Organic Molecule-Metal Junctions: Adsorption of Thiophene on Cu(110) as a Prototype, P. Sony, P. Puschnig, D. Nabok & C. Ambrosch-Draxl. Phys. Rev. Lett. 99,
176401 (2007).

Wissenschaftlicher Kontakt:
Prof. Helmut Sitter
Institut für Halbleiter- und Festkörperphysik Johannes Kepler Universität Linz T +43 / 732 / 2468 - 9623 E Helmut.Sitter@jku.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations for Research & Development Campus Vienna Biocenter 2 1030 Wien T +43 / 1 / 505 70 44 E contact@prd.at

Michaela Fritsch | PR&D
Weitere Informationen:
http://www.prd.at
http://www.fwf.ac.at/de/public_relations/press/pv200711-de.html

Weitere Berichte zu: NFN Trägermaterial

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie