Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker ringen Laserblitzen mehr Leistung ab

14.11.2007
Viele Physiker, Chemiker, Biologen und Materialwissenschaftler träumen davon, das Verhalten von Atomen und Elektronen direkt beobachten zu können. Das allerdings geht nur mit Hilfe extrem kurzer Röntgenblitze.

Über Fortschritte auf diesem Gebiet berichten Physiker von der Universität Würzburg gemeinsam mit Kollegen aus Wien und München in der Zeitschrift "Nature Physics".

Den Blick durchs Lichtmikroskop auf die Zellen einer Zwiebel dürfte jeder Schüler kennen. Will er aber tiefer in den Mikrokosmos eindringen, dann reicht das sichtbare Licht nicht aus, um die winzigen Strukturen abbilden zu können. Die Position von Atomen etwa lässt sich nur mit Röntgenstrahlung bestimmen. Will man dann auch noch die Bewegungen der Atome erkennen, ist gepulste Röntgenstrahlung erforderlich, also eine Abfolge von Röntgenblitzen.

"Die Pulsdauer entspricht der Belichtungszeit einer Kamera. Sie muss so kurz sein, dass sich in dieser Zeit die Atome nicht substanziell bewegen, sonst wird das Bild unscharf", erklärt Christian Spielmann vom Physikalischen Institut der Uni Würzburg. Allerdings spricht der Professor hier nicht über typische Kamera-Belichtungen im Bereich von Tausendstel Sekunden. Vielmehr meint er billionstel bis billiardstel Sekunden oder, um in der Sprache der Physiker zu reden, Femto- bis Attosekunden.

Zur Erzeugung derart kurzer Röntgenpulse verfolgt die Forschung zwei Strategien. Beim Deutschen Elektronen-Synchrotron DESY, einer Großforschungseinrichtung in Hamburg, wird hierfür ein Röntgenlaser entwickelt. Die Münchener, Wiener und Würzburger Physiker dagegen verfolgen einen anderen Ansatz, der sich ohne Weiteres in einem Universitätslabor realisieren lässt. An der Technischen Universität Wien lenken sie in einer Vakuumkammer Laserblitze durch Röhrchen, die mit konzentriertem Helium gefüllt sind. "Dabei entstehen die kürzesten Röntgenpulse, die zurzeit überhaupt hergestellt werden können. Sie dauern nur wenige hundert Attosekunden", sagt Spielmann.

"Leider ist dieses Verfahren nicht sehr effizient: Wenn Sie ein Watt Laserleistung hineinschicken, bekommen sie weniger als ein millionstel Watt Röntgenleistung heraus", bedauert der Physiker. Gemeinsam mit dem Forscherehepaar Enikö und József Seres von der Uni Würzburg und seinen Münchener und Wiener Kollegen beschreibt er nun in Nature Physics einen neuen Ansatz zur Erhöhung der Röntgenstrahlintensität. Dabei werden die Laserblitze nicht nur durch ein einziges Gasröhrchen geschickt, sondern durch zwei. Der Clou daran: Dadurch verdoppelt sich die Ausbeute an Röntgenintensität nicht nur, sondern ist gleich bis zu vier Mal so hoch.

Eine wundersame Mehrung? "Wir erklären das durch die kohärente Überlagerung der beiden Signale", so Spielmann. Dieses Phänomen der sei für den Bereich des sichtbaren Lichtes seit Langem bekannt. Bislang nahmen die Wissenschaftler an, dass es zur Steigerung der Effizienz von Röntgenstrahlung nicht vernünftig zu realisieren sei. Doch da haben sie sich offenbar getäuscht. Der Schlüssel zum Gelingen liegt den Forschern zufolge im Einsatz sehr intensiver und sehr kurzer Laserpulse. Sie beschreiben nun auch, welcher Druck im Helium herrschen muss und in welchem Abstand voneinander sich die Gasröhrchen befinden müssen, damit der Überhöhungseffekt eintritt.

Jetzt denken sie daran, die Zahl der Gasröhrchen weiter zu erhöhen und damit den Laserpulsen noch mehr Röntgenintensität abzuringen. Mit dieser verbesserten Methodik hoffen sie dann "auf anspruchsvollere Untersuchungen" zur direkten Beobachtung von Atomen - denn bislang konnten sie "nur" abbilden, wie Silicium-Atome anfangen zu schwingen, wenn sie erwärmt werden. Langfristig aber streben die Physiker nach Höherem - etwa in Echtzeit zu beobachten, wie große Moleküle ihre Form ändern, wenn sie mit anderen Molekülen eine Bindung eingehen.

"Coherent superposition of laser-driven soft-X-ray harmonics from successive sources", J. Seres (1,2), V. S. Yakovlev (3), E. Seres (1,2), Ch. Streli (4), P. Wobrauschek (4), Ch. Spielmann (2)& F. Krausz (3,5), Nature Physics, online publiziert am 11. November 2007, DOI: 10.1038/nphys775

1. Institut für Photonik, Technische Universität Wien, A-1040 Wien, Austria
2. Physikalisches Institut EP1, Universität Würzburg, D-97074 Würzburg, Germany
3. Department für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
4. Atominstitut der Österreichischen Universtitäten, Technische Universität Wien, A-1020 Wien, Austria

5. Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

Korrespondenz an: F. Krausz, krausz@lmu.de

Weitere Informationen: Prof. Dr. Christian Spielmann, T (0931) 888-5739, spielmann@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.physik.uni-wuerzburg.de

Weitere Berichte zu: Atom Gasröhrchen Physik Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise