Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Leben in seinen Details verstehen - Neue Mikroskopieanlage am IPHT bringt erste Ergebnisse

14.11.2007
Wissenschaftler des Instituts für Photonische Technologien (IPHT) untersuchen gemeinsam mit Kollegen des Institutes für Physikalische Chemie (IPC) der Uni Jena Vorgänge in lebenden Zellen auf molekularer Ebene.

Heute begrüßten die Forscher den Pionier der von ihnen angewendeten so genannten CARS-Mikroskopie, Harvard-Professor Sunney Xie, in ihren Labors auf dem Jenaer Beutenberg Campus.

Der mehrfach ausgezeichnete Chemiker zeigte sich von der Geschwindigkeit, mit der die Jenaer die neue Forschungsrichtung am IPHT etabliert haben, beeindruckt. Nur zehn Monate sind von der Neuinstallation der Geräte bis zur Publikation erster Ergebnisse vergangen. Prof. Dr. Jürgen Popp, Wissenschaftlicher Direktor des IPHT und Leiter der Abteilung Spektroskopie/ Mikroskopie freute sich, dem Harvard-Kollegen in dem nun voll ausgestatteten Labor die künftige Forschungsstrategie seines Teams darstellen zu können.

"Die CARS-Mikroskopie dient dem so genannten Molekularen Imaging, das es uns ermöglicht, Prozesse in lebenden Zellen live zu beobachten und damit bis ins molekulare Detail zu verstehen", erläuterte Popp am Rande des Besuches. Dabei bietet diese Mikroskopiemethode besondere Vorteile. Sie kommt zum Beispiel ohne markierende Substanzen aus, die die Vorgänge in lebenden Systemen stören könnten. Die Proben bleichen nicht wie bei anderen Methoden aus, wenn man Aufnahmen über mehrere Stunden anfertigt. Zudem reichen für die Untersuchungen schon kleinste Volumina im Bereich eines Femtoliters (10-15 Liter, das entspricht einem Würfel mit der Kantenlänge von einem Tausendstel Millimeter). Jüngste Fortschritte in der CARS-Mikroskopie erlauben es sogar, Transportvorgänge in Zellen mit einer zeitlichen Auflösung von einem Bild pro Sekunde zu verfolgen.

... mehr zu:
»CARS-Mikroskopie »IPHT

In den ersten Arbeiten am IPHT ging es zunächst um Emulsionen. "Diese Mischungen aus Wasser und Öl begegnen uns im Alltag in Form von Milch oder Cremes, können aber mit herkömmlichen Methoden nicht befriedigend untersucht werden", so Physikochemiker Popp. "Wir konnten mit Hilfe der CARS-Mikroskopie nun Tröpfchen mit einem Durchmesser von nur 700 Nanometern deutlich abbilden." Das ist für die Prozessüberwachung bei der Herstellung von Lebensmitteln oder Kosmetika sehr wichtig. In Zukunft soll es im CARS-Labor des IPHT unter anderem darum gehen, genau zu untersuchen, wie kleine Moleküle biologische Barrieren wie zum Beispiel Zellmembranen überwinden oder durch eine detaillierte Darstellung biologischer Strukturen gesundes Gewebe schon möglichst früh von krankem unterscheiden zu können. "Letzteres ist für eine frühzeitige Krebsdiagnostik von entscheidender Bedeutung", betont Popp. "Wenn uns die Unterscheidung im Labor gelingt, wollen wir an der Entwicklung eines Endoskops mitwirken, das eine CARS-Untersuchung auch direkt im Körper des Patienten ermöglicht." Als Fernziel seiner Arbeiten formuliert Popp, die biologische Grundlagenforschung voranzubringen, um Ursachen für Krankheiten zu erkennen, die Wirkung von Arzneistoffen zu untersuchen und so Behandlungsmöglichkeiten weiter zu verbessern.

Hintergrundinformation:

Die Abkürzung CARS steht für kohärente Anti-Stokes Raman-Streuung (englisch coherent anti-stokes Raman scattering) und beschreibt eine spezielle Form der Raman-Spektroskopie. Diese nach dem indischen Physiker Raman benannte Methode beruht auf der Wechselwirkung von Licht und Materie: Bestrahlt man Moleküle mit Licht, so wird dieses in ganz charakteristischer Weise gestreut. Man erhält so Informationen über die Schwingungen eines Moleküls, deren Streuungsmuster eine Art Fingerabdruck liefern, der eindeutig dem Molekül zuzuordnen ist. Die CARS-Mikroskopie als Weiterentwicklung der Raman-Spektroskopie ist eine neue optische Technik für die räumlich hoch aufgelöste Bildgebung. Sie erlaubt mit neuesten laserspektroskopischen Methoden eine chemisch selektive Darstellung mikroskopischer Details ohne Anfärbung und eröffnet damit eine Vielzahl von Anwendungen in der Zellbiologie und den Materialwissenschaften.

Prof. Dr. Sunney Xie studierte Chemie an der Peking University und promovierte an der University of California, San Diego. Er gehört zu den Pionieren der CARS-Mikroskopie und der Beobachtung einzelner Moleküle. In seiner Gruppe am Department for Chemistry and Chemical Biology der Harvard University gelang es, Echtzeit-Aufnahmen der Genexpression zu machen, also live zu beobachten, wie das Erbgut einer Zelle in Eiweiße übersetzt wird. Die CARS-Mikroskopie setzt er unter anderem dazu ein, um den aktiven Transport von Substanzen in Zellen zu studieren, der zum Beispiel in Nervenzellen über so genannte molekulare Motoren abläuft.

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de
http://bernstein.harvard.edu/

Weitere Berichte zu: CARS-Mikroskopie IPHT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise