Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Leben in seinen Details verstehen - Neue Mikroskopieanlage am IPHT bringt erste Ergebnisse

14.11.2007
Wissenschaftler des Instituts für Photonische Technologien (IPHT) untersuchen gemeinsam mit Kollegen des Institutes für Physikalische Chemie (IPC) der Uni Jena Vorgänge in lebenden Zellen auf molekularer Ebene.

Heute begrüßten die Forscher den Pionier der von ihnen angewendeten so genannten CARS-Mikroskopie, Harvard-Professor Sunney Xie, in ihren Labors auf dem Jenaer Beutenberg Campus.

Der mehrfach ausgezeichnete Chemiker zeigte sich von der Geschwindigkeit, mit der die Jenaer die neue Forschungsrichtung am IPHT etabliert haben, beeindruckt. Nur zehn Monate sind von der Neuinstallation der Geräte bis zur Publikation erster Ergebnisse vergangen. Prof. Dr. Jürgen Popp, Wissenschaftlicher Direktor des IPHT und Leiter der Abteilung Spektroskopie/ Mikroskopie freute sich, dem Harvard-Kollegen in dem nun voll ausgestatteten Labor die künftige Forschungsstrategie seines Teams darstellen zu können.

"Die CARS-Mikroskopie dient dem so genannten Molekularen Imaging, das es uns ermöglicht, Prozesse in lebenden Zellen live zu beobachten und damit bis ins molekulare Detail zu verstehen", erläuterte Popp am Rande des Besuches. Dabei bietet diese Mikroskopiemethode besondere Vorteile. Sie kommt zum Beispiel ohne markierende Substanzen aus, die die Vorgänge in lebenden Systemen stören könnten. Die Proben bleichen nicht wie bei anderen Methoden aus, wenn man Aufnahmen über mehrere Stunden anfertigt. Zudem reichen für die Untersuchungen schon kleinste Volumina im Bereich eines Femtoliters (10-15 Liter, das entspricht einem Würfel mit der Kantenlänge von einem Tausendstel Millimeter). Jüngste Fortschritte in der CARS-Mikroskopie erlauben es sogar, Transportvorgänge in Zellen mit einer zeitlichen Auflösung von einem Bild pro Sekunde zu verfolgen.

... mehr zu:
»CARS-Mikroskopie »IPHT

In den ersten Arbeiten am IPHT ging es zunächst um Emulsionen. "Diese Mischungen aus Wasser und Öl begegnen uns im Alltag in Form von Milch oder Cremes, können aber mit herkömmlichen Methoden nicht befriedigend untersucht werden", so Physikochemiker Popp. "Wir konnten mit Hilfe der CARS-Mikroskopie nun Tröpfchen mit einem Durchmesser von nur 700 Nanometern deutlich abbilden." Das ist für die Prozessüberwachung bei der Herstellung von Lebensmitteln oder Kosmetika sehr wichtig. In Zukunft soll es im CARS-Labor des IPHT unter anderem darum gehen, genau zu untersuchen, wie kleine Moleküle biologische Barrieren wie zum Beispiel Zellmembranen überwinden oder durch eine detaillierte Darstellung biologischer Strukturen gesundes Gewebe schon möglichst früh von krankem unterscheiden zu können. "Letzteres ist für eine frühzeitige Krebsdiagnostik von entscheidender Bedeutung", betont Popp. "Wenn uns die Unterscheidung im Labor gelingt, wollen wir an der Entwicklung eines Endoskops mitwirken, das eine CARS-Untersuchung auch direkt im Körper des Patienten ermöglicht." Als Fernziel seiner Arbeiten formuliert Popp, die biologische Grundlagenforschung voranzubringen, um Ursachen für Krankheiten zu erkennen, die Wirkung von Arzneistoffen zu untersuchen und so Behandlungsmöglichkeiten weiter zu verbessern.

Hintergrundinformation:

Die Abkürzung CARS steht für kohärente Anti-Stokes Raman-Streuung (englisch coherent anti-stokes Raman scattering) und beschreibt eine spezielle Form der Raman-Spektroskopie. Diese nach dem indischen Physiker Raman benannte Methode beruht auf der Wechselwirkung von Licht und Materie: Bestrahlt man Moleküle mit Licht, so wird dieses in ganz charakteristischer Weise gestreut. Man erhält so Informationen über die Schwingungen eines Moleküls, deren Streuungsmuster eine Art Fingerabdruck liefern, der eindeutig dem Molekül zuzuordnen ist. Die CARS-Mikroskopie als Weiterentwicklung der Raman-Spektroskopie ist eine neue optische Technik für die räumlich hoch aufgelöste Bildgebung. Sie erlaubt mit neuesten laserspektroskopischen Methoden eine chemisch selektive Darstellung mikroskopischer Details ohne Anfärbung und eröffnet damit eine Vielzahl von Anwendungen in der Zellbiologie und den Materialwissenschaften.

Prof. Dr. Sunney Xie studierte Chemie an der Peking University und promovierte an der University of California, San Diego. Er gehört zu den Pionieren der CARS-Mikroskopie und der Beobachtung einzelner Moleküle. In seiner Gruppe am Department for Chemistry and Chemical Biology der Harvard University gelang es, Echtzeit-Aufnahmen der Genexpression zu machen, also live zu beobachten, wie das Erbgut einer Zelle in Eiweiße übersetzt wird. Die CARS-Mikroskopie setzt er unter anderem dazu ein, um den aktiven Transport von Substanzen in Zellen zu studieren, der zum Beispiel in Nervenzellen über so genannte molekulare Motoren abläuft.

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de
http://bernstein.harvard.edu/

Weitere Berichte zu: CARS-Mikroskopie IPHT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie