Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Leben in seinen Details verstehen - Neue Mikroskopieanlage am IPHT bringt erste Ergebnisse

14.11.2007
Wissenschaftler des Instituts für Photonische Technologien (IPHT) untersuchen gemeinsam mit Kollegen des Institutes für Physikalische Chemie (IPC) der Uni Jena Vorgänge in lebenden Zellen auf molekularer Ebene.

Heute begrüßten die Forscher den Pionier der von ihnen angewendeten so genannten CARS-Mikroskopie, Harvard-Professor Sunney Xie, in ihren Labors auf dem Jenaer Beutenberg Campus.

Der mehrfach ausgezeichnete Chemiker zeigte sich von der Geschwindigkeit, mit der die Jenaer die neue Forschungsrichtung am IPHT etabliert haben, beeindruckt. Nur zehn Monate sind von der Neuinstallation der Geräte bis zur Publikation erster Ergebnisse vergangen. Prof. Dr. Jürgen Popp, Wissenschaftlicher Direktor des IPHT und Leiter der Abteilung Spektroskopie/ Mikroskopie freute sich, dem Harvard-Kollegen in dem nun voll ausgestatteten Labor die künftige Forschungsstrategie seines Teams darstellen zu können.

"Die CARS-Mikroskopie dient dem so genannten Molekularen Imaging, das es uns ermöglicht, Prozesse in lebenden Zellen live zu beobachten und damit bis ins molekulare Detail zu verstehen", erläuterte Popp am Rande des Besuches. Dabei bietet diese Mikroskopiemethode besondere Vorteile. Sie kommt zum Beispiel ohne markierende Substanzen aus, die die Vorgänge in lebenden Systemen stören könnten. Die Proben bleichen nicht wie bei anderen Methoden aus, wenn man Aufnahmen über mehrere Stunden anfertigt. Zudem reichen für die Untersuchungen schon kleinste Volumina im Bereich eines Femtoliters (10-15 Liter, das entspricht einem Würfel mit der Kantenlänge von einem Tausendstel Millimeter). Jüngste Fortschritte in der CARS-Mikroskopie erlauben es sogar, Transportvorgänge in Zellen mit einer zeitlichen Auflösung von einem Bild pro Sekunde zu verfolgen.

... mehr zu:
»CARS-Mikroskopie »IPHT

In den ersten Arbeiten am IPHT ging es zunächst um Emulsionen. "Diese Mischungen aus Wasser und Öl begegnen uns im Alltag in Form von Milch oder Cremes, können aber mit herkömmlichen Methoden nicht befriedigend untersucht werden", so Physikochemiker Popp. "Wir konnten mit Hilfe der CARS-Mikroskopie nun Tröpfchen mit einem Durchmesser von nur 700 Nanometern deutlich abbilden." Das ist für die Prozessüberwachung bei der Herstellung von Lebensmitteln oder Kosmetika sehr wichtig. In Zukunft soll es im CARS-Labor des IPHT unter anderem darum gehen, genau zu untersuchen, wie kleine Moleküle biologische Barrieren wie zum Beispiel Zellmembranen überwinden oder durch eine detaillierte Darstellung biologischer Strukturen gesundes Gewebe schon möglichst früh von krankem unterscheiden zu können. "Letzteres ist für eine frühzeitige Krebsdiagnostik von entscheidender Bedeutung", betont Popp. "Wenn uns die Unterscheidung im Labor gelingt, wollen wir an der Entwicklung eines Endoskops mitwirken, das eine CARS-Untersuchung auch direkt im Körper des Patienten ermöglicht." Als Fernziel seiner Arbeiten formuliert Popp, die biologische Grundlagenforschung voranzubringen, um Ursachen für Krankheiten zu erkennen, die Wirkung von Arzneistoffen zu untersuchen und so Behandlungsmöglichkeiten weiter zu verbessern.

Hintergrundinformation:

Die Abkürzung CARS steht für kohärente Anti-Stokes Raman-Streuung (englisch coherent anti-stokes Raman scattering) und beschreibt eine spezielle Form der Raman-Spektroskopie. Diese nach dem indischen Physiker Raman benannte Methode beruht auf der Wechselwirkung von Licht und Materie: Bestrahlt man Moleküle mit Licht, so wird dieses in ganz charakteristischer Weise gestreut. Man erhält so Informationen über die Schwingungen eines Moleküls, deren Streuungsmuster eine Art Fingerabdruck liefern, der eindeutig dem Molekül zuzuordnen ist. Die CARS-Mikroskopie als Weiterentwicklung der Raman-Spektroskopie ist eine neue optische Technik für die räumlich hoch aufgelöste Bildgebung. Sie erlaubt mit neuesten laserspektroskopischen Methoden eine chemisch selektive Darstellung mikroskopischer Details ohne Anfärbung und eröffnet damit eine Vielzahl von Anwendungen in der Zellbiologie und den Materialwissenschaften.

Prof. Dr. Sunney Xie studierte Chemie an der Peking University und promovierte an der University of California, San Diego. Er gehört zu den Pionieren der CARS-Mikroskopie und der Beobachtung einzelner Moleküle. In seiner Gruppe am Department for Chemistry and Chemical Biology der Harvard University gelang es, Echtzeit-Aufnahmen der Genexpression zu machen, also live zu beobachten, wie das Erbgut einer Zelle in Eiweiße übersetzt wird. Die CARS-Mikroskopie setzt er unter anderem dazu ein, um den aktiven Transport von Substanzen in Zellen zu studieren, der zum Beispiel in Nervenzellen über so genannte molekulare Motoren abläuft.

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de
http://bernstein.harvard.edu/

Weitere Berichte zu: CARS-Mikroskopie IPHT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht VLT auf der Suche nach Planeten im Sternsystem Alpha Centauri
10.01.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie