Sekundenbruchteile nach dem Urknall

Sie wollen die Eigenschaften der Urknall-Materie und die Entstehung der chemischen Elemente im Kosmos untersuchen. Dazu werden im FZD wichtige Komponenten von großen Detektor-Installationen entwickelt und gebaut. Diese sollen dann im Rahmen von internationalen Forschergruppen an FAIR installiert werden.

Eine bereits vorhandene Anlage an der Gesellschaft für Schwerionenforschung (GSI), die von Wissenschaftlern des Forschungszentrums Dresden-Rossendorf mitgenutzt wird, soll ebenfalls später an FAIR eingesetzt werden. Die Forschungen an dieser Anlage, die abgekürzt HADES (für High Acceptance Di-Electron Spectrometer) genannt wird, widmen sich der Frage, wie die Masse in die Welt kommt. Wesentliche Komponenten von HADES sind vor einiger Zeit im FZD konstruiert und gebaut worden. Im Hinblick auf den Einsatz an FAIR müssen weitere Komponenten der HADES-Anlage an die neuen Anforderungen angepasst werden.

Dieser Herausforderung stellt sich ein Team von Technikern, Ingenieuren und Wissenschaftlern im FZD. Großflächige Detektorkammern müssen so konstruiert und gebaut werden, dass sich gleichzeitig die Flugbahnen von mehr als 100 geladenen Teilchen über Entfernungen von einigen Metern mit einer Genauigkeit von besser als 100 Mikrometern bestimmen lassen. Diese geladenen Teilchen liefern wichtige Informationen über die unmittelbar nach dem Urknall entstandene Materie. Mit Hilfe von komplexen Betrachtungen lassen sich dann die Eigenschaften der Bestandteile der Urknall-Materie bestimmen, u. a. wie diese Bestandteile zu ihren Massen kommen. Im FZD werden auch die hierfür nötigen theoretischen Modelle entwickelt. Durch Simulationen werden damit die Anforderungen an die Genauigkeit der HADES-Experimente an FAIR bestimmt.

Zur Charakterisierung der technischen Anforderungen hier ein Beispiel: Die im FZD entwickelten sechs Detektoren zur Rekonstruktion von Teilchenspuren in HADES haben die Abmessungen von zwei auf eineinhalb Quadratmetern. In jeweils dreizehn Ebenen sind 7000 feine Drähte mit einer Positionsgenauigkeit von besser als 20 Mikrometern gespannt (ein Mikrometer entspricht einem Tausendstel Millimeter). Dabei haben die Drähte nur einen Durchmesser von 20 oder 80 Mikrometern, sind also in etwa so dünn wie ein menschliches Haar. Die Detektoren werden unter einer Spannung von ca. 2000 Volt betrieben und sind bei Betrieb ständig von einer speziellen Gasmischung durchspült. Die jetzt neu zu konstruierenden sieben Detektoren sind etwas kleiner, müssen aber noch präziser sein. Die Fertigstellung ist für 2008 geplant.

FAIR:
Am 7. November erfolgte der Start von FAIR (Facility for Antiproton and Ion Research). Vertreter aus 15 Staaten unterzeichneten gemeinsam mit der Bundesministerin für Bildung und Forschung Annette Schavan und dem Hessischen Ministerpräsident Roland Koch in Darmstadt bei der Gesellschaft für Schwerionenforschung (GSI) ein Kommuniqué über den zu errichtenden einmaligen Teilchenbeschleunigerkomplex FAIR. Die insgesamt 1,2 Milliarden Euro teure Anlage für die Forschung mit Ionen- und Antiprotonenstrahlen, die in der ersten Stufe zu 25 Prozent von Partnerstaaten wie China, Finnland, Frankreich, Georgien, Großbritannien, Indien, Italien, Österreich, Polen, Rumänien, Russland, Schweden, Slowenien und Spanien ko-finanziert wird, werden der internationalen Gemeinschaft helfen, zentrale naturwissenschaftliche und philosophische Fragen zu beantworten. Es ist abzusehen, dass alle Vorhaben an FAIR im Vollbetrieb rund 3000 Wissenschaftlern aus dem In- und Ausland einzigartige Forschungsmöglichkeiten bieten werden. Dazu gehören neben Experimenten, die die Entstehung der chemischen Elemente im Universum klären sollen, weitere, die neue Materieformen im Inneren großer Planeten im Labor untersuchen oder die Eigenschaften der Starken Kraft für elementare Materiebausteine, wie den Quarks, präzisieren. Eine andere Gruppe von Experimenten kann die Symmetrie von Materie und Antimaterie studieren und damit das Rätsel von „Antiwelten“ lösen. Und schließlich ist die Frage zu beantworten: Wie entstanden nach dem Urknall die Bestandteile der Materie, oder, wie kommt die Masse in die Welt?
Weitere Informationen:
Prof. Burkhard Kämpfer / Dr. Frank Dohrmann
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Strahlenphysik
Tel.: 0351 260 – 3258 / -2872
Email: b.kaempfer@fzd.de / f.dohrmann@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 – 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de
Information:
Das FZD leistet wesentliche Beiträge in der Grundlagen- und anwendungsorientierten Forschung zu folgenden Fragestellungen:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Das FZD engagiert sich für die Umsetzung der wissenschaftlichen Erkenntnisse im Hinblick auf die zukünftige Gestaltung von Wirtschaft und Gesellschaft. Es betreibt zu diesem Zweck sechs größere Forschungsanlagen, die auch externen Nutzern zur Verfügung stehen.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 57 Mill. Euro. Hinzu kommen etwa 10 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Media Contact

Dr. Christine Bohnet idw

Weitere Informationen:

http://www.gsi.de/fair/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer