Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist der Kaffee im fahrenden ICE kälter oder wärmer?

07.11.2007
Augsburger Physikern gelingt der Nachweis, dass die Temperatur eines Körpers nicht von dessen Bewegungszustand abhängt.

Augsburger Physikern ist es in Zusammenarbeit mit spanischen Kollegen gelungen, ein offenes und vielfach kontrovers diskutiertes Problem der Thermodynamik und der Einsteinschen Relativitätstheorie zu klären [Phys. Rev. Lett. 99, 170601 (2007)].

Mittels molekular-dynamischer Simulationen konnten sie zeigen, dass bei Wahl eines geeigneten Thermometers die Temperatur eines Körpers nicht von dessen Bewegungszustand abhängt. Mit anderen Worten: Die Kaffee-Temperatur in einem sehr schnell fahrenden Zug erscheint weder höher noch niedriger als in einem langsam fahrenden.

Sowohl in der renommierten Zeitschrift Nature [Nature 450, 4-5 (2007)] als auch vom American Institute of Physics [http://www.aip.org/pnu/2007/split/843-1.html] wurden die interessanten Ergebnisse aus Augsburg und Sevilla bereits kommentiert.

Thermodynamik und Einsteinsche Relativitätstheorie sind neben der Quantenmechanik die Eckpfeiler der modernen Physik. Im Gegensatz zu speziellen Teilgebieten wie der Akustik oder der Optik bilden sie ein allgemeines Rahmenwerk, das sämtliche Aspekte der Physik umfasst und beeinflusst. Die konsistente Vereinigung von Thermodynamik und Relativitätstheorie ist somit von zentraler Bedeutung; seit Beginn des vorherigen Jahrhunderts bereits wird sie intensiv diskutiert.

Vor Bekanntwerden der speziellen Relativitätstheorie im Jahre 1905 wurde angenommen, dass sich die Teilchengeschwindigkeiten in einem Gas gemäß einer Gaußschen Statistik verteilen. Letztere erlaubt prinzipiell auch Geschwindigkeitswerte, die die Lichtgeschwindigkeit überschreiten. Wie bereits Planck richtig erkannte, steht dies jedoch im Widerspruch zur Einsteinschen Relativitätstheorie, derzufolge massenbehaftete Teilchen sich nicht schneller als Licht bewegen dürfen. Damit ist also im Rahmen der Relativitätstheorie die ursprünglich angenommene Gaußsche Geschwindigkeitsverteilung so zu ersetzen, dass keine Überlichtgeschwindigkeiten mehr auftreten können.

Doch wie sieht nun die tatsächlich richtige relativistische Geschwindigkeitsverteilung aus? Zu dieser Frage finden sich in der wissenschaftlichen Literatur verschiedene kontrovers diskutierte Vorschläge. Um hier Klarheit zu schaffen, haben die Augsburger Physiker Jörn Dunkel, Prof. Dr. Peter Talkner und Prof. Dr. Dr. h. c. mult. Peter Hänggi am Lehrstuhl für Theoretische Physik I der Universität Augsburg in Zusammenarbeit mit ihren spanischen Kollegen Dr. David Cubero und Dr. Jesus Casado von der Universität Sevilla umfangreiche Simulationen zur Molekulardynamik relativistischer Gase durchgeführt und dabei mit hoher Genauigkeit eine Verteilung bestätigt, die bereits im Jahre 1911 von Ferencz Jüttner postuliert wurde.

Darüber hinaus klären die Computer-Experimente der Augsburger Forscher und ihrer spanischen Kollegen in anschaulicher Weise, wie sich das Konzept der Temperatur in die Relativitätstheorie einbetten lässt. Sie zeigen, wie man anhand statistischer Daten ein Thermometer konstruieren kann, das die Temperatur schneller relativistischer Teilchen zu bestimmen vermag.

Die Spezielle Relativitätstheorie besagt u. a., dass sich die Länge eines bewegten Stabes vom ruhenden Beobachter aus gesehen verringert. Im Jahre 1907 schlugen Planck und Einstein vor, dass sich analog auch die absolute Temperatur eines bewegten Körpers verringern sollte. Andere große Physiker wie Eddington argumentierten demgegenüber für eine Temperaturerhöhung, während einige Autoren die Auffassung vertraten, dass sich die Temperatur nicht ändere.

"Diese Verwirrung", so Peter Hänggi, "geistert bis zum heutigen Tag in der Physik herum. Unsere Simulationen geben diesbezüglich zumindest für Systeme in einer Dimension eine klare Antwort: Bei Verwendung eines geeigneten statistischen Thermometers hängt die Temperatur eines Gases nicht von seiner Bewegung relativ zum Beobachter ab, ein mit konstanter Geschwindigkeit bewegtes Gas erscheint also weder erhitzt noch abgekühlt."

Kontakt und weitere Informationen:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
86135 Augsburg
Telefon 0821/598-3250
peter.hanggi@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/theo1/hanggi/

Weitere Berichte zu: Physik Relativitätstheorie Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics