Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist der Kaffee im fahrenden ICE kälter oder wärmer?

07.11.2007
Augsburger Physikern gelingt der Nachweis, dass die Temperatur eines Körpers nicht von dessen Bewegungszustand abhängt.

Augsburger Physikern ist es in Zusammenarbeit mit spanischen Kollegen gelungen, ein offenes und vielfach kontrovers diskutiertes Problem der Thermodynamik und der Einsteinschen Relativitätstheorie zu klären [Phys. Rev. Lett. 99, 170601 (2007)].

Mittels molekular-dynamischer Simulationen konnten sie zeigen, dass bei Wahl eines geeigneten Thermometers die Temperatur eines Körpers nicht von dessen Bewegungszustand abhängt. Mit anderen Worten: Die Kaffee-Temperatur in einem sehr schnell fahrenden Zug erscheint weder höher noch niedriger als in einem langsam fahrenden.

Sowohl in der renommierten Zeitschrift Nature [Nature 450, 4-5 (2007)] als auch vom American Institute of Physics [http://www.aip.org/pnu/2007/split/843-1.html] wurden die interessanten Ergebnisse aus Augsburg und Sevilla bereits kommentiert.

Thermodynamik und Einsteinsche Relativitätstheorie sind neben der Quantenmechanik die Eckpfeiler der modernen Physik. Im Gegensatz zu speziellen Teilgebieten wie der Akustik oder der Optik bilden sie ein allgemeines Rahmenwerk, das sämtliche Aspekte der Physik umfasst und beeinflusst. Die konsistente Vereinigung von Thermodynamik und Relativitätstheorie ist somit von zentraler Bedeutung; seit Beginn des vorherigen Jahrhunderts bereits wird sie intensiv diskutiert.

Vor Bekanntwerden der speziellen Relativitätstheorie im Jahre 1905 wurde angenommen, dass sich die Teilchengeschwindigkeiten in einem Gas gemäß einer Gaußschen Statistik verteilen. Letztere erlaubt prinzipiell auch Geschwindigkeitswerte, die die Lichtgeschwindigkeit überschreiten. Wie bereits Planck richtig erkannte, steht dies jedoch im Widerspruch zur Einsteinschen Relativitätstheorie, derzufolge massenbehaftete Teilchen sich nicht schneller als Licht bewegen dürfen. Damit ist also im Rahmen der Relativitätstheorie die ursprünglich angenommene Gaußsche Geschwindigkeitsverteilung so zu ersetzen, dass keine Überlichtgeschwindigkeiten mehr auftreten können.

Doch wie sieht nun die tatsächlich richtige relativistische Geschwindigkeitsverteilung aus? Zu dieser Frage finden sich in der wissenschaftlichen Literatur verschiedene kontrovers diskutierte Vorschläge. Um hier Klarheit zu schaffen, haben die Augsburger Physiker Jörn Dunkel, Prof. Dr. Peter Talkner und Prof. Dr. Dr. h. c. mult. Peter Hänggi am Lehrstuhl für Theoretische Physik I der Universität Augsburg in Zusammenarbeit mit ihren spanischen Kollegen Dr. David Cubero und Dr. Jesus Casado von der Universität Sevilla umfangreiche Simulationen zur Molekulardynamik relativistischer Gase durchgeführt und dabei mit hoher Genauigkeit eine Verteilung bestätigt, die bereits im Jahre 1911 von Ferencz Jüttner postuliert wurde.

Darüber hinaus klären die Computer-Experimente der Augsburger Forscher und ihrer spanischen Kollegen in anschaulicher Weise, wie sich das Konzept der Temperatur in die Relativitätstheorie einbetten lässt. Sie zeigen, wie man anhand statistischer Daten ein Thermometer konstruieren kann, das die Temperatur schneller relativistischer Teilchen zu bestimmen vermag.

Die Spezielle Relativitätstheorie besagt u. a., dass sich die Länge eines bewegten Stabes vom ruhenden Beobachter aus gesehen verringert. Im Jahre 1907 schlugen Planck und Einstein vor, dass sich analog auch die absolute Temperatur eines bewegten Körpers verringern sollte. Andere große Physiker wie Eddington argumentierten demgegenüber für eine Temperaturerhöhung, während einige Autoren die Auffassung vertraten, dass sich die Temperatur nicht ändere.

"Diese Verwirrung", so Peter Hänggi, "geistert bis zum heutigen Tag in der Physik herum. Unsere Simulationen geben diesbezüglich zumindest für Systeme in einer Dimension eine klare Antwort: Bei Verwendung eines geeigneten statistischen Thermometers hängt die Temperatur eines Gases nicht von seiner Bewegung relativ zum Beobachter ab, ein mit konstanter Geschwindigkeit bewegtes Gas erscheint also weder erhitzt noch abgekühlt."

Kontakt und weitere Informationen:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
86135 Augsburg
Telefon 0821/598-3250
peter.hanggi@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/theo1/hanggi/

Weitere Berichte zu: Physik Relativitätstheorie Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie