Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Architektur mit einzelnen Molekülen - Forschergruppe an der Freien Universität gelingt Anordnung winziger Bausteine

29.10.2007
Einer Forschergruppe an der Freien Universität Berlin um den Experimentalphysiker Leonhard Grill ist es in Zusammenarbeit mit Chemikern der Humboldt-Universität Berlin und theoretischen Physikern der University of Liverpool erstmals gelungen, molekulare Bausteine auf atomarer Ebene präzise miteinander zu verbinden.

Die Wissenschaftler verknüpften Module der Größe von einem Nanometer, also einem Milliardstel Meter, chemisch so miteinander, als wären es Lego-Bausteine. Die Ergebnisse wurden jetzt in der Zeitschrift "Nature Nanotechnology" veröffentlicht.

Die faszinierende Vision der Nanotechnologie besteht in der kontrollierten Anordnung von Materie auf der Nanometer-Skala (1 nm = 1 Milliardstel Meter). Eine zentrale Idee besteht darin, stabile Strukturen aus einzelnen molekularen Bausteinen in einer vorgegebenen Architektur auf atomarer Ebene zu bauen, etwa zu Schaltkreisen, Sensoren und Nanomaschinen. Wirtschaftlich bedeutsam sind solche Gebilde wegen deren geringer Größe. Bisher konnten jedoch keine Moleküle auf einer Oberfläche in solchen Netzwerken vorgegebener Struktur chemisch verknüpft werden.

Um solche Nanostrukturen aufzubauen, werden Moleküle mit einer gewünschten Zahl symmetrisch angeordneter Seitengruppen ("Beine") auf eine Oberfläche aufgebracht. Durch geschicktes Erwärmen lassen sich einzelne Atome von den Seitengruppen kontrolliert abspalten, sodass Beine "aktiviert" werden, das heißt chemisch reaktive Stellen am Molekül entstehen. Anschließend verknüpfen sich die Moleküle auf der Oberfläche zu geordneten Strukturen mit definierter Form, wobei sich eine hohe Selektivität daraus ergibt, dass sie ausschließlich dann eine kovalente Bindung bilden wenn zwei "aktivierte" Beine aufeinandertreffen. Durch gezieltes Design verschiedener molekularer Bausteine konnten die Forscher zeigen, wie sich die Form der erzeugten Strukturen exakt einstellen lässt.

... mehr zu:
»Molekül

Obwohl die Ergebnisse dieser interdisziplinären Arbeit der Grundlagenforschung zuzuordnen sind, könnten diese von großem Interesse für künftige Anwendungen sein, da die atomare Größenordnung einen enormen Fortschritt in der Miniaturisierung darstellt. Aus den geringen Abmessungen der molekularen Bausteine ergibt sich eine Dichte von mehr als 1013/cm2 in einem solchen Netzwerk - das ist mehr als 10.000mal höher als die Dichte von Transistoren in integrierten Schaltkreisen oder Computerchips. In Anwendungen könnten die einzelnen Moleküle in Zukunft mit Funktionen ausgestattet werden, um zum Beispiel als elektronische Schaltkreise oder Sensoren auf atomarer Skala zu arbeiten.

Weitere Informationen erteilt Ihnen gern:
o Dr. Leonhard Grill, Institut für Experimentalphysik der Freien Universität Berlin, Telefon: 030 / 838-52805 oder -56039, E-Mail: leonhard.grill@physik.fu-berlin.de
o Prof. Mats Persson, University of Liverpool (E-Mail: mats.persson@liverpool.ac.uk)

oProf. Stefan Hecht, Humboldt-Universität Berlin (E-Mail: sh@chemie.hu-berlin.de)

Publikation:
L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht
"Nano-architectures by covalent assembly of molecular building blocks"
"Nature Nanotechnology" (Ausgabe November 2007); Internet: www. nature.com/nnano

Carsten Wette | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit

Mit Drohnen Wildschweinschäden schätzen

12.12.2017 | Ökologie Umwelt- Naturschutz

Tumoren ordentlich einheizen

12.12.2017 | Biowissenschaften Chemie