Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Röntgenstrahlung gibt Hinweis auf neue Form von Materie

17.04.2002



Tübinger Astronomen entdecken Stern, der aus Quarks besteht

Das Röntgenobservatorium CHANDRA, das seit 1999 von der NASA im Weltraum betrieben wird, hat einen Stern beobachtet, dessen "zu kleiner" Durchmesser möglicherweise neue Er-kenntnisse über die Struktur der Materie liefert. Diese Entdeckung unterstreicht den engen Zusammenhang zwischen kosmischen Objekten und der Physik der Elementarteilchen. Die CHANDRA-Beobachtung des Objekts mit dem Katalognamen RXJ1856.3-3754 legt nahe, dass die Materie im Inneren des Sterns noch dichter ist als die Atomkernmaterie, die wir von der Erde her kennen. Es ist daher möglich, das dieser Stern aus freien Quarks besteht.

Durch die Kombination von CHANDRA- und Hubble-Teleskop-Daten haben Astronomen herausgefunden, dass RXJ1856.3-3754 wie ein Festkörper mit einer Temperatur von 700.000 Grad strahlt, also mehr als 100 mal heißer als unsere Sonne ist. Der Durchmesser beträgt nur ungefähr 11 Kilometer. Ein solcher Durchmesser ist zu klein, als dass er mit Standardmodellen für Neutronensterne erklärt werden könnte, welche die bisher extremste bekannte Form von Materie darstellen. Daher lassen alle Beobachtungen dieses Sterns zusammengenommen den Schluss zu, dass er nicht aus Neutronen besteht, sondern aus Quarks. Quarks werden als fundamentale Bausteine der Atomkerne betrachtet, sie sind allerdings bisher niemals außerhalb eines Atomkerns als freie Teilchen beobachtet worden.

Dies ist der wesentliche Inhalt einer Publikation, die im "Astrophysical Journal" am 20.06.2002 erscheinen wird. Das amerikanisch-deutsche Astronomen-Team wird geleitet von Dr. Jeremy Drake vom "Harvard-Smithsonian Center for Astrophysics" (USA). Zum Team gehören auch Dr. Stefan Dreizler und Prof. Dr. Klaus Werner vom Institut für Astronomie und Astrophysik der Universität Tübingen.

Ein Fingerhut voll Neutronensternmaterial wiegt Milliarden von Tonnen. Seine außergewöhnlich hohe Dichte entspricht derjenigen von eng zusammengepackten Atomkernen. In normaler Materie dagegen sind Atomkerne weit voneinander entfernt. Atomkerne bestehen aus Neutronen und Protonen, diese wiederum bestehen aus noch kleineren Teilchen, die als Quarks bezeichnet werden und als Grundbausteine der Materie gelten. Große Teilchenbeschleuniger werden benutzt, um die Kräfte zwischen den Quarks und die Struktur der Atomkerne zu untersuchen, indem man Atomkerne mit extrem hoher Geschwindigkeit aufeinander prallen lässt und deren Bruchstücke studiert. Im Europäischen Kernforschungszentrum wurde tatsächlich im Jahr 2000 die Entdeckung eines neuen Zustandes der Materie, des Quark-Gluon-Plasmas, angekündigt.

Neutronensterne stellen das Endstadium der Entwicklung massereicher Sterne dar. Der etwa zwei Sonnenmassen schwere Eisenkern eines solchen massereichen Sterns kollabiert unter seinem eigenem Gewicht zu einem Neutronenstern mit nur etwa 20 Kilometern Durchmesser. Der überwiegende Teil der Sternhülle wird in Form einer Supernova-Explosion vom Stern fortgeschleudert. Es ist nicht klar, ob ein Quarkstern nun während einer Supernova-Explosion entstehen kann oder erst später ein Neutronenstern einen sogenannten Phasenübergang zu einem Quarkstern vollzieht.

Die Astronomen sind allerdings noch vorsichtig mit ihrer Schlussfolgerung. Im Prinzip kann man die Beobachtungen von RXJ1856.3-3754 auch mit einem normalen Neutronenstern und einem heißen Fleck auf seiner Oberfläche erklären. Ein solches Modell wird von Dr. Fred Walter (State University of New York, Stony Brook) untersucht. Walter ist einer der Entdecker von RXJ1856.3-3754, der ursprünglich 1996 mit dem deutschen Röntgensatelliten RO-SAT gefunden wurde. Allerdings würde man von einem solchen Modell her mit großer Wahrscheinlichkeit eine variable Röntgenstrahlung erwarten, was allerdings aufgrund des Beobachtungsmaterials so gut wie ausgeschlossen werden kann.

Unabhängig davon wie die ungewöhnlichen Beobachtungen von RXJ1856.3-3754 letztendlich erklärt werden können, sie zeigen, dass es möglich ist, astrophysikalische Untersuchungen des Universums dazu zu nutzen, fundamentale physikalische Fragestellungen zu untersuchen.

Weitere Informationen:

Dr. Stefan Dreizler Prof. Dr. Klaus Werner Institut für Astronomie und Astrophysik Abteilung Astronomie Sand 1 72076 Tübingen

Tel. 07071 2978612 oder 07071 2978601

E-Mail: dreizler@astro.uni-tuebingen.de oder werner@astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://astro.uni-tuebingen.de

Weitere Berichte zu: Atomkern Neutronenstern RXJ1856

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik