Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MAMI ist eine technische Meisterleistung mit hohem Potenzial für den Wissenschaftsstandort Rheinland-Pfalz

08.10.2007
Weltweit einmalige Anlage zur Beschleunigung von Elektronen an der Johannes Gutenberg- Universität Mainz wird eingeweiht.

Weltweit einmalige Anlage zur Beschleunigung von Elektronen: Nach der erfolgreichen Inbetriebnahme Ende Dezember 2006 läuft die dritte Ausbaustufe des Mainzer Mikrotrons - MAMI C im Institut für Kernphysik der Johannes Gutenberg-Universität Mainz im routinemäßigen Experimentierbetrieb.

Anlässlich der Einweihung dieser völlig neuen und komplexen Anlage sprach Doris Ahnen, Ministerin für Bildung, Wissenschaft, Jugend und Kultur, von einer technischen Meisterleistung mit hohem Potenzial für den Wissenschaftsstandort Rheinland-Pfalz. "In sechsjähriger Bauzeit wurde ein Hallen füllender und technisch außerordentlich anspruchsvoller Beschleuniger aufgebaut und im Dezember 2006 zum ersten Mal in Betrieb genommen. Alle an diesem Werk Beteiligten haben so präzise gearbeitet, dass nach einem nur zweiwöchigen Testbetrieb bereits die Experimente starten konnten", bilanzierte Ahnen.

Es gebe weltweit nur wenige Forschungseinrichtungen, die einen Beschleuniger dieser Größenordnung innerhalb einer Universität entwickeln, technisch umsetzen, betreiben und ein experimentelles Programm für zahlreiche internationale Gruppen managen. Üblicherweise werde ein solch anspruchsvolles Großgerät in einer außeruniversitären Einrichtung gebaut und von einer größeren Betreibergruppe betreut.

... mehr zu:
»Elektron »Kernphysik »MAMI »Mikrotron

"Den Vorteil einer universitären Lösung sehe ich vor allem in der engen Einbindung des wissenschaftlichen Nachwuchses in den Aufbau und den Betrieb einer solchen Anlage", sagte die Ministerin.

An der Mainzer Universität wird bereits seit Ende der 70er-Jahre eine Beschleunigeranlage zur Erzeugung eines kontinuierlichen Elektronenstrahls, realisiert als Kaskade von sogenannten Rennbahn-Mikrotronen betrieben. Anfang der 90er-Jahre kam als weitere Stufe das weltweit größte Rennbahn-Mikrotron hinzu. "Dessen hervorragende Strahlqualität erlaubte die Durchführung von Experimenten, die die Mainzer Kern- und Teilchenforschung an die Weltspitze brachte", erklärt der Präsident der Johannes Gutenberg-Universität Mainz, Univ.-Prof. Dr. Georg Krausch, "die internationale Positionierung unserer Wissenschaftler auf diesem Gebiet ist unumstritten. Die Kern- und Teilchenphysik gehört zu den ausgewiesenen Forschungsschwerpunkten unserer Universität."

Die Experimente lieferten vor allem Grundlagenwissen über den Aufbau unserer Materie, besonders der Protonen und Neutronen. Zu den Höhepunkten der MAMI-Forschungen gehören neue Aussagen über die Ladungsverteilung in Neutronen und Untersuchungen über Pionen, leichte Teilchen, die aus einem Quark und einem Antiquark aufgebaut sind. Mit der neuen Beschleunigerstufe, MAMI C genannt, können künftig noch ganz andere Teilchen erforscht werden, vor allem die schwereren Mesonen und die Hyperonen, die ein sogenanntes "Strange Quark" enthalten und mit der bisher in Mainz zur Verfügung stehenden Elektronenenergie nicht erzeugt werden konnten. Davon erwarten sich die Wissenschaftler neue Erkenntnisse über den Aufbau der Nukleonen, den Bausteinen des Atomkerns, und die darin wirksamen fundamentalen Kräfte.

Das Institut für Kernphysik der Johannes Gutenberg-Universität Mainz hat im Februar mit dem routinemäßigen Experimentierbetrieb der neuen Beschleunigerstufe des Mainzer Mikrotron begonnen. Nach der erfolgreichen Inbetriebnahme Ende Dezember 2006 konnte somit schnell vom Testbetrieb mit nur geringer Strahlleistung zum Experimentierbetrieb mit derzeit bis zu 60 Mikroampere Strahlstrom bei einer Energie von 1.500 Megaelektronenvolt, entsprechend 90kW Leistung in einem haarfeinen Elektronenstrahl übergegangen werden. "Dass nach nur wenigen Tagen Testbetrieb diese komplexe Anlage mit hoher Leistung rund um die Uhr für kernphysikalische Messungen zur Verfügung steht, zeigt, dass wir in den letzten Jahren bei Planung und Aufbau dieser Anlage gute Arbeit geleistet haben", sagt Dr. Andreas Jankowiak, Betriebsleiter des Elektronenbeschleunigers "Mainzer Mikrotron" (MAMI). "Mit diesem weltweit einmaligen Beschleuniger steht uns nun ein hochenergetischer Strahl für völlig neue Experimente in der Kern- und Teilchenphysik zur Verfügung", führt Univ.-Prof. Dr. Hans-Jürgen Arends, Geschäftsführender Direktor des Instituts für Kernphysik, aus.

In sechsjähriger Bauzeit wurde in Mainz der bestehende Elektronenbeschleuniger für rund 12,5 Millionen Euro mit einer vierten Stufe versehen und damit die Energie des Teilchenstrahls von 855 auf 1.500 Megaelektronenvolt (MeV) nahezu verdoppelt. Die Konstruktion ist so angelegt, dass die bislang außerordentlich hochwertige Strahlqualität erhalten bleibt. Damit können die Kernphysiker, die für ihre Forschungen aus aller Welt ans Mainzer Mikrotron kommen, noch tiefer ins Innere der Materie blicken.

Um eine Energie von 1.500 Megaelektronenvolt zu erreichen, wird der Elektronenstrahl zunächst durch die "alte" Anlage, deren drei Stufen jeweils aus zwei Dipolmagneten und einem Linearbeschleuniger bestehen, auf 855 MeV gebracht. Indem der Strahl durch wiederholte Ablenkung mit Hilfe der Magneten immer wieder durch die gleiche Linearbeschleunigerstruktur geführt wird, gewinnen die Elektronen beständig an Energie. Mit den erreichten 855 MeV tritt der Strahl dann in die neue Anlage, ein harmonisches doppelseitiges Mikrotron (HDSM), ein. Dieses einmalige Konzept basiert auf Entwicklungsarbeiten der Beschleunigergruppe des Instituts für Kernphysik unter der damaligen Leitung von Dr. Karl-Heinz Kaiser, bei der vier Magnete, jeweils 250 Tonnen schwer, den Strahl ablenken und zwei Linearbeschleuniger mit verschiedenen Frequenzen elektrische Felder erzeugen, durch die der Strahl seine Energie gewinnt. "Wir arbeiten hier mit der Standardfrequenz von 2,45 Gigahertz, das entspricht der Frequenz einer haushaltsüblichen Mikrowelle. Zusätzlich haben wir den weltweit ersten 4,90-Gigahertz-Beschleuniger hier entwickelt und eingebaut", erläutert Jankowiak. Auf seinem Weg durch die kleinen Kupfer- und Aluminiumröhrchen erreicht der Strahl schon nach wenigen Metern nahezu Lichtgeschwindigkeit und gewinnt anschließend durch die weitere Energiezufuhr an Masse. Ist das Ziel erreicht, haben die Elektronen ungefähr sieben Kilometer zurückgelegt.

"Wir haben eine phantastische Strahlqualität: Alle Elektronen haben am Ziel nahezu die gleiche Energie und sind in einem feinen Strahl von nur einigen zehntel Millimetern Durchmesser gebündelt", erklärt Arends. "Das ist eine wichtige Voraussetzung für Präzisionsexperimente." In diesem Energiebereich von 1.500 MeV ist MAMI C die Referenzanlage weltweit und in den kommenden Jahren wird diese in- und ausländischen Wissenschaftler für neue, spannende Experimente in der Kern- und Teilchenphysik für 6.500 Stunden im Jahr zur Verfügung stehen.

Kontakt und Informationen:
Dr. Andreas Jankowiak, Betriebsleiter Mainzer Mikrotron
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26004, Fax +49 6131 39-22964
E-Mail: janko@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de

Weitere Berichte zu: Elektron Kernphysik MAMI Mikrotron

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie