Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaxien aus Milliarden Sternen verbiegen die Raumzeit

26.09.2007
Schon Einstein erkannte, dass die Raumzeit durch große Massen verbogen wird, so dass Lichtstrahlen oder Radiowellen scheinbar wie durch eine Linse abgelenkt werden.

Mit diesem Gravitationslinsen-Effekt fahnden Physiker heute beispielsweise nach erdähnlichen Planeten. An der Universität Bonn hat nun eine neue Emmy-Noether-Nachwuchsgruppe ihre Arbeit angetreten. Die Forscher wollen unter anderem untersuchen, wie extrem weit entfernte Galaxien mit Milliarden von Sternen die Raumzeit verbiegen. So können sie erkennen, wie Galaxien altern - und vielleicht Rückschlüsse auf die rätselhafte dunkle Materie ziehen.

Dass große Massen die Ausbreitungsrichtung von Lichtstrahlen beeinflussen, hat man erstmals 1919 bei einer totalen Sonnenfinsternis nachgewiesen: Die Sterne, die am Rand unseres verdunkelten Zentralgestirns zu sehen waren, schienen weiter voneinander entfernt als normalerweise am Nachthimmel. Grund: Das von ihnen ausgehende Licht war zur Sonne hin abgelenkt worden. Einstein hatte dieses Phänomen schon 1916 in seiner allgemeinen Relativitätstheorie vorhergesagt. Aus ihr lässt sich unter anderem herleiten, dass die Gravitation die Raumzeit "verbiegt": Wellen breiten sich scheinbar nicht mehr gradlinig aus, sondern werden abgelenkt - fast, als würden sie einer Masseanziehung unterliegen.

Weit entfernte Gravitationslinsen scheinen von der Erde aus nahezu punktförmig. Bei ihnen kann ein merkwürdiger Effekt auftreten: Wenn Objekte hinter ihnen stehen, die Licht- oder Radiowellen aussenden, können diese Wellen auf mehreren Wegen um die Linse herumlaufen. Im Teleskop sieht man dann beispielsweise zwei Bilder ein und desselben Objekts. "Wir durchsuchen den Himmel nach derartigen Doppelstrukturen", erklärt der Leiter der Emmy-Noether-Gruppe Dr. Olaf Wucknitz. "Dabei versuchen wir herauszufinden, ob es sich tatsächlich um zwei Quellen handelt oder um eine einzige - ob also eine Gravitationslinse die Ursache ist."

... mehr zu:
»Galaxie »Radiowelle »Raumzeit

Halo aus dunkler Materie

Denn derartige "gelinste" Bilder verraten Experten viel über die Linse selbst. "In der Regel handelt es sich dabei um weit entfernte Galaxien mit Hunderten von Milliarden Sternen von der Größe unserer Sonne", erläutert Wucknitz. "Je nach Masseverteilung in dieser Galaxie werden die Bilder von der dahinter liegenden Quelle unterschiedlich verzerrt. Wir erfahren also, wie die Linsen-Galaxie aufgebaut ist, selbst wenn man sie mit Hilfe eines Teleskops direkt gar nicht sehen kann." Dank dieser Methode wissen Astrophysiker heute beispielsweise, dass Galaxien von einem Halo aus dunkler Materie umgeben sind. Auch Planeten lassen sich durch diesen Linseneffekt finden.

Wucknitz beschäftigt sich schon seit seinem Studium in Hamburg mit Gravitationslinsen. Promoviert hat er bei einem der Pioniere auf diesem Gebiet, Professor Dr. Sjur Refsdal. Seine Doktorarbeit schrieb er unter anderem beim namhaften Jodrell Bank-Radioteleskop in Manchester. Auch danach blieb er der Radioastronomie treu - zuletzt durch seine Mitarbeit im europäischen Forschungsnetzwerk "ANGLES".

Den roten Faden seiner wissenschaftlichen Tätigkeit bilden aber die Gravitationslinsen. Diese möchte er nun unter anderem mit Hilfe des neuen Radioteleskops LOFAR erforschen. Das Akronym steht für Low Frequency Array, einen Zusammenschluss neuartiger Teleskope, die für niedrigfrequente Radiowellen empfindlich sind. Initiiert wurde das Projekt durch die Niederlande, wo auch die meisten der fußballplatzgroßen Antennenfelder stehen werden. "Aber auch in Deutschland werden LOFAR-Teleskope errichtet - beispielsweise neben dem Observatorium des Max-Planck-Instituts für Radioastronomie in Effelsberg", sagt Wucknitz. "Wenn man diese Antennenfelder zusammen schaltet, kann man den Himmel systematisch und mit großer Auflösung nach gelinsten Radioquellen durchmustern."

Letztlich könnten seine Forschungsergebnisse auch etwas über die Jugendjahre unserer eigenen Galaxie verraten, der Milchstraße. Denn ein Blick in die Tiefen des Alls ist immer auch ein Blick in die Vergangenheit: Viele Milliarden Jahre sind Radiowellen von den Rändern des Universums unterwegs, bis wir sie auf der Erde auffangen. Entsprechend "veraltet" sind die Informationen, die sie liefern. "Wir erkennen so, wie die Linsen-Galaxien vor langer Zeit aussahen", betont Wucknitz. "Je näher die Linse, desto aktueller das Bild, was wir uns von ihr machen. Wir können so erkennen, wie Galaxien altern - und wie sie sich dabei verändern."

Kontakt:
Dr. Olaf Wucknitz
Argelander-Institut für Astronomie der Universität Bonn
Telefon: 0228/73-1772
E-Mail: wucknitz@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.astro.uni-bonn.de/~wucknitz

Weitere Berichte zu: Galaxie Radiowelle Raumzeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise