Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es rappelt im Kristall!

19.09.2007
Jülicher Physiker entschlüsseln einen Faktor für effiziente Thermoelektrizität

Rappelnde Atompaare verringern die Wärmeleitfähigkeit kristalliner Materialien besonders gut, fanden Physiker des Forschungszentrums Jülich heraus. Schwere, in Kristallen frei schwingende, hantelförmige Gebilde könnten eine Schlüsselfunktion einnehmen bei der Entwicklung von Materialien mit geringer Wärmeleitfähigkeit und gleichzeitig hoher elektrischer Leitfähigkeit.

Damit ließe sich der Wirkungsgrad thermoelektrischer Generatoren steigern, die aus Temperaturdifferenzen Strom herstellen. Bisher ungenutzte Abwärme könnte so zunehmend wirtschaftlich interessant werden. Die Ergebnisse werden in der kommenden Ausgabe der renommierten wissenschaftlichen Fachzeitschrift „Physical Review Letters“ veröffentlicht und sind bereits vorab online einsehbar.

„Unsere Erkenntnisse öffnen ganz neue Wege auf der Suche nach immer effizienteren thermoelektrischen Materialien“, freuen sich Dr. Werner Schweika und Dr. Raphaël Hermann vom Jülicher Institut für Festkörperforschung. Das Ziel ist klar: Abwärme, die heute noch ungenutzt verloren geht, etwa in Müllverbrennungsanlagen, Kraftfahrzeugen oder Blockheizkraftwerken, so vollständig wie möglich zur Energierückgewinnung zu nutzen, um gleichzeitig zum Klimaschutz beizutragen.

... mehr zu:
»Atom »Wärme »Wärmeleitfähigkeit

Thermoelektrische Materialen erzeugen eine elektrische Spannung, wenn sie einem Temperaturgefälle ausgesetzt sind. Dieses Phänomen wird in thermoelektrischen Generatoren genutzt, um elektrische Energie zu produzieren.

Noch ist der Wirkungsgrad der Materialien bei der Umwandlung in Strom recht schlecht und liegt bei maximal 8 Prozent. Zum Vergleich: Kohlekraftwerke haben einen Wirkungsgrad von bis zu 45 Prozent.

Das begrenzt den Einsatz der Generatoren bisher auf spezielle Anwendungen, etwa in der Raumfahrt.

Um einen besseren Wirkungsgrad zu erzielen, sind Materialen nötig, die elektrischen Strom gut leiten, Wärme dagegen schlecht. Die Herausforderung besteht darin, dass gute Stromleiter in der Regel ebenso gute Wärmeleiter sind. Solche Materialien zeichnen sich auf atomarer Ebene durch eine regelmäßige Gitterstruktur aus. Elektrizität breitet sich darin in Form von Elektronenströmen aus, Wärme in Form von Gitterschwingungen, die sich wellenförmig durch das Material bewegen.

Unregelmäßigkeiten in der Gitterstruktur, etwa fehlende Atome, können zwar die Wärmeleitfähigkeit verringern, beeinträchtigen aber auch die elektrische Leitfähigkeit.

Schweika und Hermann haben nun entschlüsselt, wie der atomare Bauplan eines altbekannten guten thermoelektrischen Materials die Kombination der scheinbar unvereinbaren Eigenschaften ermöglicht.

Die Jülicher Forscher haben mit Hilfe von Neutronenstreuexperimenten und Wärmekapazitätsmessungen die Ursache für die geringe Wärmeleitfähigkeit einer Zinkantimon-Legierung untersucht. Dabei stießen sie auf eine bisher unbekannte Form so genannter dynamischer Unordnung, die die Ausbreitung von Wärme in diesem Halbmetall behindert: Zinkantimon hat eine regelmäßige Kristallstruktur, in der atomare Hanteln mit relativ großem Gewicht lose eingebettet sind. Wenn Wärmewellen durch das Material wandern, werden auch die Hanteln in Schwingung versetzt. Auf die Wärmewellen hat das einen ähnlich störenden Effekt wie Wellenbrecher vor einer Küste auf das Meerwasser. Der Clou: Die elektrische Leitfähigkeit wird nicht behindert.

Bereits 2003 konnte Hermann nachweisen, dass einzelne Atome, eingefangen in kristallinen Käfigstrukturen, unabhängig von den Kristallgittern schwingen und die Wärmeleitfähigkeit verringern. Jetzt erbrachten er und seine Kollegen den Beweis, dass käfigartige Strukturen keine Voraussetzung für solche lokalisierten Schwingungen sind.

Veröffentlichungen:

* Dumbbell rattling in thermoelectric zinc-antimony; W. Schweika, R. P. Hermann, M. Prager, J. Persson, V. Keppens; Phys. Rev. Lett. 99, No 12 (2007)

* Einstein Oscillators in Thallium Filled Antimony Skutterudites; R. P. Hermann, R. Jin, W. Schweika, F. Grandjean, D. Mandrus, B. C. Sales, and G. J. Long; Phys. Rev. Lett. 90, 135505 (2003)

Neutronenstreuung in der Forschung:
Neutronen sind elektrisch neutrale Bausteine der Atomkerne. Sie werden in Forschungsreaktoren oder Spallationsneutronenquellen erzeugt und auf die zu untersuchenden Proben gelenkt. An den Atomen und Molekülen der Proben "prallen" sie ab; dabei können sie ihre Richtung und Geschwindigkeit ändern. Die Art dieser "Streuung" gibt Auskunft über die Anordnung und Bewegung der Atome in der Probe.
Anwendungen der Thermoelektrizität:
Die wichtigsten thermoelektrischen Phänomene wurden in der ersten Hälfte des 19. Jahrhunderts von Thomas Seebeck und Jean Peltier entdeckt. Der Seebeck-Effekt beschreibt die Entstehung einer elektrischen Spannung entlang eines Temperaturgradienten über zwei unterschiedlichen miteinander verbundenen Halbleitern, der Peltier-Effekt die Entwicklung von Wärme oder Kälte an der Verbindungsstelle zweier unterschiedlicher Halbleiter, wenn Strom hindurchfließt. Die Effekte können technisch genutzt werden, um mit thermoelektrischen Generatoren und Thermoelementen Strom zu erzeugen, Temperaturen zu messen und zu kühlen.
Solche Vorrichtungen sind kompakt, leise und verschleißfrei, da sie keine beweglichen Teile enthalten. Trotz dieser Vorteile ist die Anwendung zur Energiegewinnung bisher Nischen vorbehalten, etwa der Stromversorgung von Raumschiffen auf Missionen zu den äußeren Planeten unseres Sonnensystems, wo nicht genügend Licht für Solarenergie vorhanden ist.

Energiequelle ist in diesen Fällen das Wärmegefälle zwischen einer radioaktiven Hitzequelle im Raumschiff und der Kälte des Weltraums. Peltier-Elemente werden zur Kühlung etwa in Kühlboxen eingesetzt.

Das größte Hindernis für eine weite Verbreitung thermoelektrischer Energierückgewinnung ist der zu geringe Wirkungsgrad der bisher bekannten Materialien. Doch das Interesse an effizienten Systemen ist groß. Im Fokus sind zum Beispiel Autos. Ihr Bedarf an Elektrizität wächst stetig, und derzeitige Verbrennungsmotoren nutzen nur 25 Prozent der eingesetzten Energie für Fortbewegung und Zubehör.

Links:
Forschungszentrum Jülich:
http://www.fz-juelich.de/portal/index.php?path=angebote/pressemitteilungen
Institut für Festkörperforschung (IFF):
http://www.fz-juelich.de/iff/index.php
IFF-Bereich Streumethoden:
http://www.fz-juelich.de/iff/d_ism
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Institut für Festkörperforschung, 52425 Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Atom Wärme Wärmeleitfähigkeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Designte Proteine gegen Muskelschwund

29.06.2017 | Biowissenschaften Chemie

Benzin und Chemikalien aus Pflanzenresten

29.06.2017 | Biowissenschaften Chemie

Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung

29.06.2017 | Energie und Elektrotechnik