Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum ist die Herkules-Zwerggalaxie so flach?

14.09.2007
Erste referierte und akzeptierte Veröffentlichung auf Basis von Beobachtungen des neuen Large Binocular Telescope

Durch einige der aller ersten wissenschaftlichen Beobachtungen mit dem brandneuen Large Binocular Telescope (LBT) in Arizona ist es einem internationalen Team von Astronomen gelungen, bei einem erst kürzlich entdeckten winzigen Begleiter unseres Milchstraßensystems, der sogenannten Herkules Zwerggalaxie, außergewöhnliche Eigenschaften zu entdecken: Während nahezu alle Objekte in der Familie der kleinsten Zwerggalaxien rund sind, hat diese über 430000 Lichtjahre entfernte Galaxie ein sehr flaches Erscheinungsbild in Form einer Scheibe oder Zigarre.


Das sehr flache und elongierte Erscheinungsbild der Herkules-Zwerggalaxie wird deutlich, wenn man die Verteilung der schwachen Sterne auf der Aufnahme im Computer "verschmiert". Wurde die Galaxie durch die Schwerkräfte unseres Milchstraßensystems so verformt, oder wurde sie gleich so geboren? Bild: LBT Corporation


Das Large Binocular Telescope (LBT) mit seinen beiden Hauptspiegeln mit jeweils 8,4 Metern Durchmesser. Bild: LBT Corporation

Wie bei unserem Milchstraßensystem, verteilen sich die Sterne in vielen großen Galaxien in einer scheibenartigen Struktur. In kleineren Galaxien wie der Herkules-Zwerggalaxie, welche trotz ihres Namens nur ein zehn Millionstel der Sternenzahl unserer Galaxis enthält, wurde nie zuvor eine scheibenartige Struktur beobachtet. Unter den Millionen gut untersuchten Galaxien fand sich bisher keine mit einer zigarrenartigen Form.

Eine Erklärung für die außergewöhnliche Morphologie dieser Galaxie ist, dass sie durch die gravitativen Kräfte unseres Milchstraßensystems verformt wurde. Dieser Effekt ist definitiv bei einer anderen Satellitengalaxie unseres Milchstraßensystems, der Sagittarius-Zwerggalaxie, zu beobachten. Jedoch ist dieses Objekt dem Zentrum unserer Galaxis zehnmal näher als die Herkules-Zwerggalaxie und deshalb den "zerstörerischen" Schwerkräften des Milchstraßensystems viel stärker ausgesetzt.

Die Herkules-Zwerggalaxie kann daher nur ein ähnliches Schicksal ereilt haben, wenn sie aufgrund ihrer Umlaufbahn dem Zentrum unseres Milchstraßensystems außergewöhnlich nahe gekommen ist. "Die Herkules-Zwerggalaxie ist deshalb entweder völlig anders als irgendeine der Millionen anderen bislang studierten Galaxien, oder sie umkreist unsere Galaxis auf einem extremen, nahezu in das Zentrum "eintauchenden" Orbit: in jedem Fall ist sie ein besonderes, ja einzigartiges Objekt", so Matthew Coleman vom Max-Planck-Institut für Astronomie in Heidelberg, der diese Studie leitet.

Das größte Einzelteleskop der Welt

Diese Schlussfolgerungen wurden durch die sehr tiefen Aufnahmen ermöglicht, die mit dem brandneuen Large Binocular Telescope (LBT) gewonnen wurden. Das LBT ist das größte Einzelteleskop der Welt und befindet sich auf dem 3190 Meter hohen Mount Graham in Arizona. Zwei riesige Spiegel mit 8,4 Metern Durchmesser befinden sich gemeinsam auf einer Montierung und machen das Teleskop zu einem gigantischen Fernglas.

Das Bild der Herkules Zwerggalaxie wurde unter Verwendung der High-tech Large Binocular Camera (LBC Blue) gewonnen, welche sich im Primärfokus eines der beiden 8,4 Meter Spiegel befindet. LBC Blue und sein zukünftiger Zwilling für den roten Spektralbereich, LBC Red, wurden von den italienischen Partnern des Projekts entwickelt. Dieses Instrument und das Teleskop arbeiten zusammen wie eine riesige Digitalkamera, mit deren Hilfe Bilder extrem lichtschwacher Objekte in einem Gesichtsfeld von der Größe des Vollmondes gewonnen werden können. "Ich bin erfreut zu sehen, dass den Astronomen mit der neuen Kamera solche beeindruckenden Bilder zur Verfügung gestellt werden können", sagt der Erbauer der Kamera, Emanuele Giallongo, vom INAF in Rom. "Wir stellten unseren Astronomen erste Beobachtungszeit zur Demonstration der wissenschaftlichen Einsatzfähigkeit des LBT zur Verfügung, damit sie zeigen können, was mit diesem neuen Instrument geleistet werden kann", sagt der Direktor des LBT Observatoriums, Richard Green. "Dies ist nur das erste Ergebnis, viele weitere werden folgen".

Neue Chance, ferne Planeten, Sterne und Galaxien zu erforschen

Durch die Kombination der Strahlengänge beider Einzelspiegel wird das LBT in seiner endgültigen Konfiguration so viel Licht sammeln, wie ein Teleskop mit einem einzigen Hauptspiegel von 11,8 Metern Durchmesser. Damit wird die Lichtsammelleistung des 2,4 Meter - Spiegels des Hubble Weltraumteleskops um einen Faktor 24 übertroffen. Noch bedeutender ist, dass das LBT dann die Auflösung eines 22,8 Meter - Teleskops haben wird, denn es wird über die modernste Adaptive Optik verfügen und die Bilder der Einzelspiegel interferometrisch zu einem Gesamtbild überlagern. Die Astronomen sind damit in der Lage, die durch die Luftunruhe verursachte Unschärfe erdgebundener Aufnahmen zu kompensieren. Mit dieser Leistungsfähigkeit wird das LBT völlig neue Möglichkeiten zur Erforschung von Planeten außerhalb des Sonnensystems und zur Untersuchung der schwächsten und am weitesten entfernten Galaxien bieten.

Die LBC Kamera ist das erste einer ganzen Reihe von High-Tech-Instrumenten, mit denen das LBT in der Zukunft ausgestattet sein wird. Diese zusätzlichen Instrumente schließen sowohl Spektrographen mit unterschiedlichen Auflösungen und spektralen Empfindlichkeiten ein, als auch komplexe Instrumente zur Kombination der Strahlengänge der beiden Hauptspiegel. Sowohl das Teleskop als auch die Instrumente werden in internationaler Zusammenarbeit von Instituten in den USA, Italien und Deutschland gebaut.

Aufgrund der eindruckvollen ersten Bilder und Ergebnisse sind die Astronomen nun sehr zuversichtlich, dass das 120 Millionen Dollar-Projekt auf einem guten Weg ist, eine neue Tür für spektakuläre Beobachtungen von Planeten, Sternen und Galaxien zu öffnen.

Die Partner in der LBT Corporation (LBTC) sind: University of Arizona, USA; Istituto Nazionale di Astrofisica, Italien; LBT Beteiligungsgesellschaft (LBTB), Deutschland; Max-Planck-Gesellschaft, Astrophysikalisches Institut Potsdam, Universität Heidelberg; Ohio State University, USA; The Research Corporation, USA (University of Notre Dame, University of Minnesota and University of Virginia)

Die deutschen Partner unter der Koordination des Max-Planck-Instituts für Astronomie, Heidelberg, sind mit 25 Prozent Beobachtungszeit am LBT-Projekt beteiligt.

Die komplette Autorenliste der Publikation zur Herkules-Zwerggalaxie lautet:
Matthew G. Coleman (Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany); Jelte T. A. de Jong (Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany); Nicolas F. Martin (Max-Planck-Institut für Astronomie, Königstuhl 17,D-69117 Heidelberg, Germany); Hans-Walter Rix (Max-Planck-Institut für Astronomie, Königstuhl 17,D-69117 Heidelberg, Germany); David J. Sand (Chandra Fellow, Steward Observatory, The University of Arizona, Tucson, AZ 85721); Eric F. Bell (Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany); Richard W. Pogge (Dep. of Astronomy, Ohio State Univ., 140 West 18th Avenue, Columbus, OH 43210-1173); David J. Thompson (LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721-0065); H. Hippelein (Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany); E. Giallongo (INAF, Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio, Italy);

R. Ragazzoni (INAF, Osservatorio Atronomico di Roma, via Frascati 33, I-00040 Monteporzio, Italy); Andrea DiPaola (INAF, Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio, Italy); Jacopo Farinato (INAF, Osservatorio Astronomico di Padova, vicolo dell'Osservatorio, 5, 35122 Padova, Italy); Riccardo Smareglia (INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo, 11, 34131 Trieste, Italy); Vincenzo Testa (INAF, Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio, Italy); Jill Bechtold (Steward Observatory, The University of Arizona, Tucson, AZ 85721); John M. Hill (LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721-0065); Peter M. Garnavich (Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138); Richard F. Green (LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721-0065)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Astronom Astronomie Galaxie Herkules-Zwerggalaxie INAF LBC LBT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie