Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchron durch die Barriere - Abstoßung hält Atome beim Tunneln zusammen

30.08.2007
Mainzer Quantenphysiker erbringen direkten Nachweis für Paar-Tunnelprozess bei ultrakalten Atomen - Veröffentlichung in Nature

Physiker an der Johannes Gutenberg-Universität Mainz konnten zum ersten Mal beobachten, wie zwei miteinander stark wechselwirkende Atome gemeinsam durch eine Barriere tunneln. "Die Theorie der Quantenmechanik sagt, dass diese zwei Atome nicht alleine tunneln können, sondern nur zusammen als Paar, obwohl sie sich gegenseitig abstoßen.

In unserem Experiment können wir diesen Prozess jetzt erstmals auch direkt sehen", erläutert Simon Fölling aus der Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM). Die Gruppe um Univ.-Prof. Dr. Immanuel Bloch untersucht solche Tunnelprozesse anhand von ultrakalten Atomen, die in Lichtgittern gefangen sind. Das Ziel dabei ist, Vorgänge in echten kristallinen Materialien, wie etwa den Magnetismus, besser zu verstehen. Die Beobachtungen und den Nachweis des Atom Co-Tunnelling hat das Wissenschaftsjournal Nature in seiner neuesten Ausgabe publiziert (Nature 448, 1029-1032).

Es gehört zu den Eigenarten der Quantenmechanik, dass Materieteilchen durch eine eigentlich undurchdringliche Schranke nicht gestoppt werden, sondern sie passieren können. Der als "Tunneln" bezeichnete Prozess wird in Mainz mit Hilfe von ultrakalten Quantengasen untersucht, die am absoluten Temperaturnullpunkt bei etwa minus 273 Grad Celsius in einem Lichtgitter festgehalten werden. "Man kann sich das so vorstellen, dass dann in dem Lichtgitter jedes Atom auf einem bestimmten Gitterplatz sitzt wie ein Ei in einem Eierkarton", so Fölling. Nach den Vorstellungen der klassischen Physik würden die Atome auf ihrem jeweiligen Platz unbeweglich festsitzen. Nach den Prinzipien der Quantenmechanik dagegen können sie die Lichtbarriere von einer Seite zur anderen durchlaufen. Um diesen Effekt genauer zu untersuchen, haben die Mainzer Quantenphysiker einen modifizierten "Eierkarton" aus Licht gebaut, bei dem das Tunneln von jedem Platz nur zu genau einem der benachbarten Plätze im Gitter möglich ist. Es entsteht eine "Doppeltopffalle", in der ein einzelnes Atom durch Tunneln zwischen den beiden Plätzen hin- und herwandern kann und dies bis in die Unendlichkeit tun würde, da keine Reibung es bremst.

... mehr zu:
»Atom »Tunnel »Tunnelprozess

Das eigentliche Interesse der Forscher liegt jedoch in der Beobachtung von miteinander wechselwirkenden Atomen. Dazu setzen sie genau zwei Atome, welche sich gegenseitig abstoßen, auf eine Seite eines Doppeltopfes. Je nachdem wie stark diese beiden Atome wechselwirken, gibt es nun zwei Möglichkeiten, wie sie sich verhalten. Im ersten Fall wird das Experiment so angelegt, dass die Abstoßung klein und die Tunnelrate, also die Häufigkeit mit der die Atome von einer Seite der Barriere zur anderen wandern können, hoch ist. Hier zeigt sich, dass die beiden Atome gleichzeitig oder nacheinander von links nach rechts und zurück tunneln.

Im zweiten Fall ist die Wechselwirkung zwischen den beiden Atomen stärker und die Tunnelrate ist kleiner beziehungsweise die Tunnelbarriere höher. "Jetzt passiert etwas Erstaunliches: Zwischen den beiden Atomen herrscht eine starke Abstoßung, und intuitiv würde man erwarten, dass sie sich deshalb einzeln auf den Plätzen links und rechts der Barriere einrichten. Dies wäre auch ihr bevorzugter Zustand. Tatsächlich beobachtet man aber, dass sich die Atome nicht voneinander trennen und nicht einzeln tunneln. Wenn überhaupt, können sie nur gemeinsam die Barriere durchlaufen", erklärt Fölling. Das Phänomen tritt deswegen auf, weil bei einer Trennung des Atompaars Energie frei würde, die jedoch mangels Reibungsverlusten nicht "entsorgt" werden kann. Nach dem Energieerhaltungssatz müssen die beiden daher zusammenbleiben - "repulsively bound pairs" oder "Paar, das durch Abstoßung zusammengehalten wird" tauften Innsbrucker Forscher 2006 eine solche Verbindung.

Dass die beiden sich abstoßenden und doch aneinandergeketteten Atome tatsächlich als Paar tunneln können, haben die Mainzer Experimente jetzt sichtbar gemacht. Ein solcher Vorgang, bei dem das Tunneln einzelner Teilchen nicht möglich ist, das eines Paares hingegen schon, wird "Tunnelprozess zweiter Ordnung" oder "Paartunneln" genannt. Es ist in einer solchen Anordnung sogar möglich, dass ein Atom dazu dient, den Tunnelprozess bei einem anderen Atom auszulösen, also die Funktion eines Schalters für das Tunneln hat - ein Effekt, der für Elektronen bekannt ist und zur Verwendung in der Elektronik erforscht wird. In erster Linie aber dient die Untersuchung komplexer Tunnelprozesse mit Atomen als Modellsystem dazu, das Verhalten von Elektronen in der Kristallstruktur gewöhnlicher Materialien besser zu verstehen: Hier bewirken Tunnelprozesse zweiter Ordnung von Elektronen die gemeinsame Ausrichtung der sogenannten Spins im Material und erzeugen damit in vielen Materialien deren magnetische Eigenschaft.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller and I. Bloch: Direct Observation of Second Order Atom Tunnelling. Nature 448, 1029-1032, 30 August 2007; doi:10.1038/nature06112

Kontakt und Informationen:
Dipl.-Phys. Simon Fölling
Tel. +49 6131 39-25955
Fax +49 6131 39-23428
E-Mail: foelling@uni-mainz.de
Univ.-Prof. Dr. Immanuel Bloch
Tel. +49 6131 39-26234
Fax +49 6131 39-25179
E-Mail: bloch@uni-mainz.de
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz

Petra Giegerich | idw
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/bec/index.html
http://www.nature.com/nature/journal/v448/n7157/full/nature06112.html

Weitere Berichte zu: Atom Tunnel Tunnelprozess

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics