Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulente Geburt in der Urwolke

30.08.2007
Max-Planck-Forscher erklären in einer neuen Simulation, wie Planeten aus Gas und Staub entstehen

Planeten werden aus kosmischen Gas- und Staubwolken geboren. Darin bilden sich im Lauf der Zeit kleine Materiebrocken, die dann zu Bausteinen von der Größe eines winzigen Asteroiden verklumpen. Ein internationales Team - darunter Forscher aus dem Max-Planck-Institut für Astronomie in Heidelberg - hat simuliert, wie diese Asteroiden zu Planeten heranwachsen. Eine Rolle dabei spielen turbulente Strömungen. (Nature, 30. August 2007)



Geburt in der Urwolke: Der Ausschnitt der zirkumstellaren Scheibe zeigt, dass sich an der hellen Stelle so viel Materie ansammelt, dass ein lokaler Kollaps einsetzt. Diese Verdichtung bleibt in der turbulenten Strömung stabil und fängt mit der Zeit immer mehr Materie aus der Scheibe ein. Schließlich bildet sich ein Miniplanet, der später mit vielen anderen zusammenstößt und einen großen Planeten bildet. Bild: Max-Planck-Institut für Astronomie

Selbst unser riesiges Sonnensystem hat mal klein angefangen. In seiner Geburtsstunde entstand im Zentrum einer Wolke aus Gas und Staub ein Stern - die Sonne. Sie nahm die meiste Materie der Wolke in sich auf. Die restlichen Staubteilchen rotierten in einer platten Schicht, der so genannten zirkumstellaren Scheibe, um sie herum. Diese Staubpartikel, so die Theorie, stießen aneinander und verklumpten immer mehr, bis sie einige Meter groß waren.

Die Brocken waren jetzt aber zu groß, um aneinander zu haften und zerstörten sich beim Aufprall selbst. Zerstückelt, abgelenkt und durch das Gas abgebremst, trudelten sie dann spiralförmig umher. Innerhalb weniger Jahrhunderte stürzten sie schließlich in die Sonne. An dieser Stelle endete bisher die Beschreibung - sehr zum Leidwesen der Astronomen. Denn das Szenario beschreibt eine Fehlgeburt, weil die metergroßen Brocken instabil sind und von der Bildfläche verschwinden.

... mehr zu:
»Asteroid »Planet »Sonnensystem

Die Theorie endete in der Sackgasse

Max-Planck-Forscher und Astronomen aus den USA und Kanada haben nun in einer Simulation berechnet, wie ein junges Sonnensystem trotzdem erfolgreich auf die Welt kommt. "Wir helfen damit der Theorie der Planetenentstehung aus der wissenschaftlichen Sackgasse", sagt Thomas Henning, der die Gruppe leitete: "Denn erst, wenn sehr große Brocken - Planetesimale -, die viele Kilometer durchmessen, zusammenwachsen, funktioniert die alte Theorie wieder." Die Zeitspanne zwischen Brocken und ganzen Planetenkernen war bisher unbekannt. Die acht Planeten unseres Systems und die vielen Planeten anderer Sterne zeigen aber, dass bisher unbekannte Effekte auch die metergroßen Brocken zusammenfügen müssen. Nur so entrinnen sie dem Tod im Sonnenfeuer und dienen als Baumaterial für größere Körper.

Turbulenzen verdichten die Brocken

Um dieses Rätsel zu lösen, haben die Heidelberger Wissenschaftler und ihre Kollegen erstmals die physikalischen Prozesse am Computer simuliert. Dabei haben sie alle auftretenden Kräfte eingerechnet und berücksichtigt, wie Staub und Gasteilchen wechselwirken. So konnten sie in der Simulation dreidimensional verfolgen, wie das Sonnensystem langsam anwächst.

Nach diesem Prinzip fanden die Forscher heraus, dass Magnetfelder durch die Gasscheibe strömen, bevor diese anfängt zu kollabieren und sich Brocken bilden. Der Kollaps verstärkt diese Felder dann zusätzlich, wodurch in der Scheibe Turbulenzen entstehen, die den Gasdruck erhöhen. Während sich dann einzelne Brocken aus fester Materie in einer Ebene sammeln - der zirkumstellaren Scheibe -, drückt das Gas an einigen Stellen auf diesen Materiestrom und verlangsamt ihn. Der Gasdruck verklumpt dadurch die Brockenschicht und staucht sie gleichzeitig zusammen. Der Effekt ähnelt einer Spurverengung auf der Autobahn, durch die sich die Fahrzeuge stauen.

Bei der Größe eines Asteroiden ist das Gröbste überstanden

Bei solch großen Brocken beginnt die Gravitation alle anderen Effekte zu dominieren: Hat sich einmal ein kompakter Brocken in der turbulenten Strömung gebildet, bleibt er stabil. Wenn seine Größe etwa die eines Asteroiden oder Miniplaneten erreicht, kann ihn das Gas nicht länger abbremsen. Die Gefahr, dass der Brocken in den Stern abstürzt, ist also gebannt. "Dieser Wachstumsprozess arbeitet erstaunlich effektiv", sagt Hubert Klahr vom Heidelberger Max-Planck-Institut für Astronomie: "Er ist bereits nach etwa hundert Jahren abgeschlossen."

Nun steht dem Wachstum bis auf normale Planetengröße nichts mehr im Weg. Diese Planetesimale kollabieren weiter und formen immer festere Körper. Mehrere Millionen von ihnen kreisen dann in der Scheibe. Einige davon vergrößern sich zu Babyplaneten und üben dann eine so große Gravitationskraft aus, dass Gas, Staub und kleinere Brocken um sie herum immer schneller auf sie einstürzen. Dadurch wachsen sie zu echten Planeten heran. Sie verschlucken restliche Brocken Stück um Stück, und die Scheibe wird fast komplett leergefegt. Das Sonnensystem sieht dann so aus, wie wir es heute beobachten können: Ein Stern und mehrere Planeten. Einzelne Alleingänger überleben diesen Kannibalismus in der zirkumstellaren Scheibe und kreisen als Kometen und Asteroiden durch das Sonnensystem. So lautet zumindest die Theorie in der neuen Simulation. Ob sich die Natur tatsächlich an dieses Drehbuch hält, müssen zukünftige Beobachtungen von fernen Sonnensystemen während ihrer Geburt zeigen.

[STR/JS]

Originalveröffentlichung:

Anders Johansen, Jeffrey S. Oishi, Mordecai-Mark Mac Low, Hubert Klahr, Thomas Henning, Andrew Youdin
Rapid planetesimal formation in turbulent circumstellar discs
Nature, 30. August 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Asteroid Planet Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise