Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulente Geburt in der Urwolke

30.08.2007
Max-Planck-Forscher erklären in einer neuen Simulation, wie Planeten aus Gas und Staub entstehen

Planeten werden aus kosmischen Gas- und Staubwolken geboren. Darin bilden sich im Lauf der Zeit kleine Materiebrocken, die dann zu Bausteinen von der Größe eines winzigen Asteroiden verklumpen. Ein internationales Team - darunter Forscher aus dem Max-Planck-Institut für Astronomie in Heidelberg - hat simuliert, wie diese Asteroiden zu Planeten heranwachsen. Eine Rolle dabei spielen turbulente Strömungen. (Nature, 30. August 2007)



Geburt in der Urwolke: Der Ausschnitt der zirkumstellaren Scheibe zeigt, dass sich an der hellen Stelle so viel Materie ansammelt, dass ein lokaler Kollaps einsetzt. Diese Verdichtung bleibt in der turbulenten Strömung stabil und fängt mit der Zeit immer mehr Materie aus der Scheibe ein. Schließlich bildet sich ein Miniplanet, der später mit vielen anderen zusammenstößt und einen großen Planeten bildet. Bild: Max-Planck-Institut für Astronomie

Selbst unser riesiges Sonnensystem hat mal klein angefangen. In seiner Geburtsstunde entstand im Zentrum einer Wolke aus Gas und Staub ein Stern - die Sonne. Sie nahm die meiste Materie der Wolke in sich auf. Die restlichen Staubteilchen rotierten in einer platten Schicht, der so genannten zirkumstellaren Scheibe, um sie herum. Diese Staubpartikel, so die Theorie, stießen aneinander und verklumpten immer mehr, bis sie einige Meter groß waren.

Die Brocken waren jetzt aber zu groß, um aneinander zu haften und zerstörten sich beim Aufprall selbst. Zerstückelt, abgelenkt und durch das Gas abgebremst, trudelten sie dann spiralförmig umher. Innerhalb weniger Jahrhunderte stürzten sie schließlich in die Sonne. An dieser Stelle endete bisher die Beschreibung - sehr zum Leidwesen der Astronomen. Denn das Szenario beschreibt eine Fehlgeburt, weil die metergroßen Brocken instabil sind und von der Bildfläche verschwinden.

... mehr zu:
»Asteroid »Planet »Sonnensystem

Die Theorie endete in der Sackgasse

Max-Planck-Forscher und Astronomen aus den USA und Kanada haben nun in einer Simulation berechnet, wie ein junges Sonnensystem trotzdem erfolgreich auf die Welt kommt. "Wir helfen damit der Theorie der Planetenentstehung aus der wissenschaftlichen Sackgasse", sagt Thomas Henning, der die Gruppe leitete: "Denn erst, wenn sehr große Brocken - Planetesimale -, die viele Kilometer durchmessen, zusammenwachsen, funktioniert die alte Theorie wieder." Die Zeitspanne zwischen Brocken und ganzen Planetenkernen war bisher unbekannt. Die acht Planeten unseres Systems und die vielen Planeten anderer Sterne zeigen aber, dass bisher unbekannte Effekte auch die metergroßen Brocken zusammenfügen müssen. Nur so entrinnen sie dem Tod im Sonnenfeuer und dienen als Baumaterial für größere Körper.

Turbulenzen verdichten die Brocken

Um dieses Rätsel zu lösen, haben die Heidelberger Wissenschaftler und ihre Kollegen erstmals die physikalischen Prozesse am Computer simuliert. Dabei haben sie alle auftretenden Kräfte eingerechnet und berücksichtigt, wie Staub und Gasteilchen wechselwirken. So konnten sie in der Simulation dreidimensional verfolgen, wie das Sonnensystem langsam anwächst.

Nach diesem Prinzip fanden die Forscher heraus, dass Magnetfelder durch die Gasscheibe strömen, bevor diese anfängt zu kollabieren und sich Brocken bilden. Der Kollaps verstärkt diese Felder dann zusätzlich, wodurch in der Scheibe Turbulenzen entstehen, die den Gasdruck erhöhen. Während sich dann einzelne Brocken aus fester Materie in einer Ebene sammeln - der zirkumstellaren Scheibe -, drückt das Gas an einigen Stellen auf diesen Materiestrom und verlangsamt ihn. Der Gasdruck verklumpt dadurch die Brockenschicht und staucht sie gleichzeitig zusammen. Der Effekt ähnelt einer Spurverengung auf der Autobahn, durch die sich die Fahrzeuge stauen.

Bei der Größe eines Asteroiden ist das Gröbste überstanden

Bei solch großen Brocken beginnt die Gravitation alle anderen Effekte zu dominieren: Hat sich einmal ein kompakter Brocken in der turbulenten Strömung gebildet, bleibt er stabil. Wenn seine Größe etwa die eines Asteroiden oder Miniplaneten erreicht, kann ihn das Gas nicht länger abbremsen. Die Gefahr, dass der Brocken in den Stern abstürzt, ist also gebannt. "Dieser Wachstumsprozess arbeitet erstaunlich effektiv", sagt Hubert Klahr vom Heidelberger Max-Planck-Institut für Astronomie: "Er ist bereits nach etwa hundert Jahren abgeschlossen."

Nun steht dem Wachstum bis auf normale Planetengröße nichts mehr im Weg. Diese Planetesimale kollabieren weiter und formen immer festere Körper. Mehrere Millionen von ihnen kreisen dann in der Scheibe. Einige davon vergrößern sich zu Babyplaneten und üben dann eine so große Gravitationskraft aus, dass Gas, Staub und kleinere Brocken um sie herum immer schneller auf sie einstürzen. Dadurch wachsen sie zu echten Planeten heran. Sie verschlucken restliche Brocken Stück um Stück, und die Scheibe wird fast komplett leergefegt. Das Sonnensystem sieht dann so aus, wie wir es heute beobachten können: Ein Stern und mehrere Planeten. Einzelne Alleingänger überleben diesen Kannibalismus in der zirkumstellaren Scheibe und kreisen als Kometen und Asteroiden durch das Sonnensystem. So lautet zumindest die Theorie in der neuen Simulation. Ob sich die Natur tatsächlich an dieses Drehbuch hält, müssen zukünftige Beobachtungen von fernen Sonnensystemen während ihrer Geburt zeigen.

[STR/JS]

Originalveröffentlichung:

Anders Johansen, Jeffrey S. Oishi, Mordecai-Mark Mac Low, Hubert Klahr, Thomas Henning, Andrew Youdin
Rapid planetesimal formation in turbulent circumstellar discs
Nature, 30. August 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Asteroid Planet Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten