Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Manganate: Informationen speichern mit "bekleideten" Elektronen

22.08.2007
Physiker entschlüsseln extreme Widerstandsänderungen in Metall-Sauerstoff-Verbindungen

Bestimmte Metall-Sauerstoff-Verbindungen wie das Oxid des chemischen Elements Mangan weisen besondere Eigenschaften in ihrer Leitfähigkeit aus: So kann der elektrische Widerstand durch äußere Einwirkung so beeinflusst werden, dass sich ein Manganat von einem Isolator in einen Stromleiter verwandelt.


Schematische Darstellung des Experiments zur Entschlüsselung der Mechanismen von Widerstandsänderungen in Manganaten: Mittels einer extrem genau positionierbaren Nanospitze im Elektronenmikroskop konnte eine Verbindung zwischen den elektrischen Eigenschaften und der räumlichen Anordnung der bekleideten Elektronen (Polaronen) sichtbar gemacht werden.


Atomarer Aufbau der Kristallstruktur einer Praseodym-Kalzium-Manganat Verbindung mit extremen Änderungen des elektrischen Widerstands.

Wissenschaftlern aus Göttingen, New York und Chicago ist es nun gelungen, die Ursachen dieser "kolossalen Widerstandsänderungen" zu entschlüsseln. Das Verständnis der physikalischen Effekte ist von Bedeutung für die Entwicklung einer neuen Form von Datenspeichern, sogenannten nichtflüchtigen Speicherchips für Handys und USB-Sticks. Dabei werden die Informationen abgelegt in unterschiedlichen Widerstandszuständen des Manganats, die durch kleine elektrische Impulse geschaltet werden können. Auf deutscher Seite wurden die Arbeiten am Institut für Materialphysik der Georg-August-Universität unter der Leitung von Privatdozent Dr. Christian Jooß durchgeführt. Die Forschungsergebnisse werden in den "Proceedings of the National Academy of Sciences of the United States of America" (PNAS) vom 21. August 2007 vorgestellt.

Das Element Sauerstoff - mit fast 20 Prozent Volumenanteil in der Erdatmosphäre eines der am häufigsten vorkommenden Gase - geht mit Metallen sehr stabile Verbindungen ein. Zu den besonders faszinierenden Metall-Sauerstoff-Verbindungen gehören die Oxide der Übergangsmetalle Eisen, Kobalt, Nickel, Kupfer und Mangan. Diese bilden mit symmetrisch um sich gruppierten Sauerstoffatomen im Gerüst eines weiteren Metalls die sogenannte Perowskit-Struktur. Zu diesen Perowskiten gehören die Manganate, die eine extreme Abhängigkeit ihres elektrischen Widerstands von äußeren Einwirkungen aufweisen. So können durch Magnetfelder, Licht oder Druck Änderungen der Leitfähigkeit von bis zu 10 Größenordnungen hervorgerufen werden. Der Perowskit verwandelt sich dabei von einem Isolator zu einem elektrischen Leiter.

... mehr zu:
»Isolator »Manganat »Polaron

Grundlegendes Problem beim physikalischen Verständnis dieser Effekte, die als kolossale Widerstandsänderungen bezeichnet werden, ist die hohe Komplexität der Elektronenzustände in diesen Materialien. Manganate zeigen in besonders ausgeprägter Weise ein korreliertes Verhalten der Elektronen: Sie beeinflussen sich gegenseitig durch starke elektrische und magnetische Kräfte. Darüber hinaus verursachen sie bei ihrer Bewegung durch das Kristall - gemeint ist damit die dreidimensional und periodisch angeordnete Struktureinheit der Metall-Sauerstoff-Verbindung - eine Verschiebung der Atome aus den idealen Positionen des Kristallgitters, das sich mit dem Elektron mitbewegen kann. Diese mit dem Feld ihrer Gitterverzerrung "bekleideten" Elektronen sind in der Physik auch als Polaronen bekannt.

Die Physiker haben nun einen Durchbruch im Verständnis der Bewegung und Ordnung von Polaronen als wesentliche Ursache für kolossale Widerstandsänderungen in Manganaten erzielt. Mit Hilfe moderner Elektronenmikroskopie konnte eine räumlich geordnete periodische Anordnung der "bekleideten Elektronen" nachgewiesen werden. Die Polaronen kristallisieren zu einem periodischen Muster, was zu einer starken Unterdrückung ihrer Beweglichkeit führt; die Manganate verwandeln sich in einen Isolator. Wird dieser geordnete Polaronenkristall durch ein äußeres elektrisches Feld relativ zu den Gitteratomen in Bewegung gesetzt, zerfällt er nach einiger Zeit in einen ungeordneten Zustand; es entsteht die sogenannte Polaronenflüssigkeit. Damit einher geht eine drastische Verringerung des elektrischen Widerstands. Durch eine extrem genau positionierbare Nanospitze im Elektronenmikroskop konnte dieser Prozess unmittelbar sichtbar gemacht werden.

Die grundlegenden Untersuchungen der Manganate sowie die Entwicklung von Anwendungen werden auf Göttinger Seite am Institut für Materialphysik in der Arbeitsgruppe "Funktionale Dünnschichten" durchgeführt. Neben Dr. Jooß sind daran Sebastian Schramm, Julia Fladerer, Peter Moschkau und Dr. Jörg Hoffmann beteiligt. Ihre Arbeiten sind außerdem eingebettet in ein Teilprojekt des Göttinger Sonderforschungsbereiches 602 "Komplexe Strukturen in kondensierter Materie von atomarer bis mesoskopischer Skala". Kooperationspartner in den USA waren Wissenschaftler des Brookhaven National Laboratory in New York und des Department of Physics der University of Illinois at Chicago.

Originalveröffentlichung:
Ch. Jooss, L. Wu, T. Beetz, R. F. Klie, M. Beleggia, M. A. Schofield, S. Schramm, J. Hoffmann, and Y. Zhu: Polaron melting and ordering as key mechanisms for colossal resistance effects in manganates, PNAS 104 (2007) 13597-13602
Kontaktadresse:
PD Dr. Christian Jooß
Georg-August-Universität Göttingen
Fakultät für Physik - Institut für Materialphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-5303, e-mail: jooss@ump.gwdg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.material.physik.uni-goettingen.de

Weitere Berichte zu: Isolator Manganat Polaron

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics