Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live-Aufnahmen aus dem Herzen der Sonne

20.08.2007
In jeder Sekunde durchdringen etwa 70 Milliarden Neutrinos aus dem Innern der Sonne eine Fläche von der Größe unseres Daumennagels. Die Geisterteilchen lassen sich jedoch schwer beobachten. So war es bisher unmöglich, Neutrinos mit niedriger Energie in Echtzeit nachzuweisen. Eine Kollaboration aus internationalen Forschern hat jetzt erstmals mit dem Borexino-Detektor Sonnenneutrinos beobachtet und somit neue Signale des Sterns entschlüsselt. Die Teilchen berichteten wie kleine Sonden über die Prozesse im Kern des kosmischen Gasballs.

Ein Leben auf der Erde ist ohne die Sonne nicht denkbar, sie spendet Licht und Wärme. Die Energie dafür entsteht im Innern des Sterns: Bei etwa 15 Millionen Grad Celsius fusionieren hier die Kerne verschiedener Atome. Dabei senden sie stetig unterschiedliche Strahlung und Partikel aus - einige davon sind die Neutrinos. Die Elementarteilchen bekommen durch die verschiedenen Prozesse im Sonneninneren unterschiedlich viel Energie mit auf ihren Weg durch die Sonne und quer durch das All. Hochenergetische Neutrinos konnten Forscher bereits in der Vergangenheit in Echtzeit beobachten. Diese stammen aber aus Prozessen in der Sonne, die nur einen kleinen Bruchteil der Energie erzeugen. Die am häufigsten stattfindenden Reaktionen setzen dagegen Neutrinos mit geringer Energie frei.


Neutrinos auf der Durchreise: Der Blick in den Borexino-Detektor. Im Innern einer Kugel, die 14 Meter durchmisst, treffen die Geisterteilchen aus der Sonne auf 300 Tonnen einer speziellen Flüssigkeit und erzeugen dort kleine Lichtblitze.
Bild: Borexino Kollaboration

Signale in Echtzeit

Ein Team aus internationalen Forschern, darunter Wissenschaftler der Technischen Universität München und des Max-Planck-Instituts für Kernphysik, haben jetzt erstmals diese niedrigenergetischen Neutrinos in Echtzeit beobachtet. Diese neutralen Elementarteilchen stammen aus dem radioaktiven Zerfall von Beryllium im Sonnenkern. Wenn die Forscher diese dann auf der Erde registrieren, können sie live beobachten, wie Energie im Sonneninneren freigesetzt wird. "Das war bisher nicht möglich, da wir in unserem ersten Sonnenneutrinoexperiment dieser Art, Gallex/GNO, niederenergetische Neutrinos nur über die Zeit gemittelt gemessen haben. Noch ganz andere Beobachtungen der Sonne weisen wiederum meist nur Lichtteilchen von ihrer Oberfläche nach", sagt Franz von Feilitzsch von der Technischen Universität München. Diese Photonen brauchen nämlich mindestens 100 000 Jahre, um vom Sonnenkern zur Oberfläche zu wandern. Neutrinos hingegen flitzen ungehindert durch den Gasball. "Die Neutrinoforschung berichtet somit in Echtzeit über den Energieausstoß der Sonne", erklärt Stefan Schönert vom Max-Planck-Institut für Kernphysik: "Sie hat allerdings auch ihre Tücken, denn wir müssen erstmal die Neutrinos messen und wirklich auch nur diese."

... mehr zu:
»Detektor »Lichtblitz »Neutrino »Teilchen

Abgeschirmt im Untergrund

Die Herausforderung für die Neutrinoforschung ist nicht, dass es zu wenig Neutrinos gibt. Ganz im Gegenteil: Bis zu 70 Milliarden Neutrinos durchqueren im Sekundentakt einen Quadratzentimeter der Erdoberfläche. Sie haben allerdings unterschiedliche Energie und sind nur ein Bestandteil eines ganzen Strahlenschwarms. Auf die Detektoren der Wissenschaftler hagelt außer Neutrinos auch ein ganzer Schwall von anderen Teilchen und Strahlung ein. Das Borexino-Team ist deshalb mit seinem Experiment in den Untergrund geflüchtet - einen Kilometer unter die Erdoberfläche. Im Untergrundlabor Gran Sasso in den italienischen Abruzzen haben die Wissenschaftler eine riesige Neutrinofalle aufgebaut, die am 16. Mai dieses Jahres in Betrieb genommen wurde. Das Herzstück des Borexino-Experiments ist sein Detektor, der 300 Tonnen Flüssigkeit enthält. "Wir fanden in den ersten Messungen heraus, dass etwa 50 Neutrinos pro Tag aus dem Berylliumzerfall im Inneren des Detektors Lichtblitze erzeugen", sagt Lothar Oberauer von der TUM.

Schnappschuss von den Geisterteilchen

Rasen Neutrinos durch diese Flüssigkeit, Szintillator genannt, dann prallen sie dort auf einzelne Elektronen in den Atomen. Die Elektronen erhalten dabei ein Teil der Energie vom Neutrino und übertragen diese auf benachbarte Moleküle. Deren Elektronen klettern dann auf ein höheres Energieniveau - das Molekül ist dadurch in einem angeregten Zustand. Die Elektronen schwingen unruhig auf ihren neuen Bahnen umher und springen letztendlich auf ihre ursprünglichen Plätze zurück, aber nicht ohne einen Preis dafür zu bezahlen: Sie müssen Energie abgeben, indem sie Lichtteilchen aussenden. 2200 Sensoren beobachten dabei dieses Licht und senden die Signale an einen Computer. Der zeichnet dann in Echtzeit auf, wie viel Energie die Lichtblitze haben und woher sie kommen. Auf diese Weise machen die Forscher eine Art Schnappschuss von den durchrasenden Neutrinos. Die Fotos zeigen mit einer Genauigkeit von bis zu 13 Zentimetern an, woher die Lichtblitze aus dem 14 Meter großen Detektor kommen.

Detektor nach dem Zwiebelprinzip

Allerdings kann auch andere Strahlung wie natürliche Radioaktivität oder Teilchen aus dem fernen Weltall diese Lichtblitze auslösen. "Daher sind wir in den Untergrund gegangen und haben den Detektor wie eine Matrjoschka mit mehreren Hüllen gebaut, um möglichst viel dieser Strahlung abzuschirmen", erklärt Stefan Schönert. Im Kern des Detektors hält eine speziell angefertigte, nur 100 Mikrometer dünne Nylonschicht den Szintillator in Form. Weitere Flüssigkeitsschichten, von einer Stahlhüllen gestützt sind, schirmen zusätzlich andere Einflüsse ab, etwa kosmische Strahlung oder das radioaktiv zerfallene Radon. Alle Materialen wurden extra für das Borexino-Experiment ausgewählt und auf ihre Reinheit hin untersucht. Die Forscher nutzen aber auch einfache Mittel - Wasser höchster Reinheit zum Beispiel. 2400 Tonnen Wasser wurden unter strengen Bedingungen gefiltert und dienen als äußerer Strahlenpuffer.

"Die größte Herausforderung war für uns aber, vorher die Teile des Detektors von kleinsten Spuren natürlicher, radioaktiver Verunreinigungen zu befreien", sagt Stefan Schönert. Die einzelnen Teile und die Flüssigkeiten für den Detektor wurden unter strengster Qualitätskontrolle produziert, gereinigt und montiert. Nur so können die Forscher ausschließen, dass nicht etwa die Bauteile der Neutrinofalle das Szintillationslicht auslösen. "Diese unerwünschten Effekte hätten es unmöglich gemacht Sonnenneutrinos zu beobachten", sagt Oberauer.

Gäste im Detektor

Einige Teilchen jedoch, die nicht aus der Sonne oder dem All stammen, sind willkommen: Die Forscher messen auch die Neutrinos aus den Kernreaktoren und Teilchenbeschleunigern auf der Erde. Das CERN in Genf etwa schickt einen Neutrinostrahl durch die Erde, der bereits mit Borexino beobachtet wurde. Die Elementarteilchen müssen dafür über 732 Kilometer weit reisen. Ähnlich weit sausen auch die Neutrinos aus europäischen Kernreaktoren in das Untergrundlabor, bis sie in Borexino eine besondere Sequenz an Lichtblitzen erzeugen. Aber auch die Erde selbst sendet Signale. Diese Neutrinosignale zeigen zum Beispiel, wie verschiedene radioaktive Elemente in der Erdkruste, dem Mantel und dem Kern verteilt sind. Und sie berichten, ebenso wie ihre Verwandten aus der Sonne, über Prozesse, die dort Wärme erzeugen.

Die Messungen des Borexino-Experiments eröffnen somit einen neuen Einblick in das Innerste der Erde und des Sterns. Die Daten sollen neue Einsichten in die Astroteilchenphysik liefern und somit auch helfen, unser Wissen über das All zu vertiefen. "Wir erwarten die kommenden Ergebnisse mit großer Spannung und sind auf Überraschungen gefasst. Eine Supernovaexplosion in unserer Galaxie und ihr Neutrinosignal würde unsere Arbeit krönen", sagt Max-Planck-Forscher Schönert.

Originalarbeit (engl.) http://arxiv.org/abs/0708.2251

First real time detection of Be7 solar neutrinos by Borexino
Borexino Collaboration
Cornell University Library
Kontakt:
Technische Universität München
Physik Department, Lehrstuhl für Experimentalphysik-Astroteilchenphysik
Prof. Dr. Lothar Oberauer
James Franck Strasse, 85747 Garching
Telefon: 089 / 289.12509
E-Mail: Lothar.Oberauer@ph.tum.de
Max-Planck-Institut für Kernphysik
Dr. Stefan Schönert
Saupfercheckweg 1, 69117 Heidelberg
Telefon: 6221 516. 803
E-Mail: Stefan.Schoenert@mpi-hd.mpg.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://arxiv.org/abs/0708.2251
http://www.tu-muenchen.de/

Weitere Berichte zu: Detektor Lichtblitz Neutrino Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise