Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzer sichtbarer Lichtblitz erzeugt "weißes" Attosekunden Röntgenlicht

10.08.2007
Kein Lichtblitz kann kürzer als die Zeit sein, die eine Lichtwelle für eine volle Schwingung benötigt. Einem Wissenschaftlerteam unter der Leitung von Prof. Ferenc Krausz ist es nun gelungen, zum ersten Mal Blitze von intensivem Laserlicht zu erzeugen, die mehr als die Hälfte ihrer Energie innerhalb eines einzigen gut kontrollierten Wellenzyklus abgeben.

Atome, die diesem extremem Lichtpuls ausgesetzt sind, senden einen Attosekunden-Röntgenpuls aus (eine Attosekunde ist ein Milliardstel von einem Milliardstel einer Sekunde), dessen Spektrum - übertragen auf niedrigere Frequenzen - beinahe ebenso viele Farben wie sichtbares Lichts umfasst, angefangen bei Blau über Grün und Gelb bis hin zu Rot. Der resultierende "weiße" Puls hat erwartungsgemäß eine Dauer von etwa 100 Attosekunden und enthält mehr als eine Million Röntgenphotonen. Er ist daher kurz genug, um die Bewegung der auf Molekül-Orbitalen umlaufenden Elektronen einzufangen.

Über die Echtzeitbeobachtung der Elektronen, die Atome aneinander binden, wird man wertvolle Einsichten gewinnen, wie es zur Bildung und zum Auseinanderfallen von Molekülen kommt. Die Ergebnisse wurden in der Juli-Ausgabe des New Journal of Physics [1,2] veröffentlicht und sind das Thema der Titelseite der Fachzeitschrift SCIENCE (10. August 2007).

Licht ist eine Welle, in der das schwingende elektromagnetische Feld seine Richtung und Stärke mit verblüffender Schnelligkeit ändert. Im Fall von sichtbarem Licht treten diese Änderungen einige 100 Billionen Mal (100 000 mal eine Milliarde) in der Sekunde auf. Daher benötigt sichtbares Licht für eine volle Schwingung nur einige tausend Attosekunden. Ein Forscherteam an der Ludwig-Maximilians-Universität München und am Max-Planck-Institut für Quantenoptik unter der Leitung von Prof. Ferenc Krausz hat es nun geschafft, intensive Blitze von sichtbarem Laserlicht zu erzeugen, bei denen mehr als die Hälfte der Energie innerhalb eines einzigen Schwingungszyklus steckt.

Mit dieser einzelnen Feldschwingung großer Amplitude kann man auf geladene Teilchen wie Elektronen gezielt eine extrem starke Kraft ausüben, und damit deren Bewegung in und um die Atome mit noch nie da gewesener Präzision steuern.

Auf dem Maximum dieser hochintensiven Wellenschwingung ist die Kraft stark genug, um ein Elektron mit fast hundertprozentiger Wahrscheinlichkeit vom Atom wegzuziehen, wobei das Elektron eine Geschwindigkeit von mehreren Tausend km pro Sekunde erreicht. Aber selbst mit dieser hohen Geschwindigkeit kommt das freigesetzte Elektron nur einige Nanometer weit, bevor es während der zweiten Hälfte der Lichtschwingung, die eine Kraft in die entgegengesetzte Richtung ausübt, gezwungen wird, zum Mutteratom zurückzukehren. Bei dieser so genannten Rekombination, die schon etwa zwei tausend Attosekunden nach der Freisetzung des Elektrons stattfindet, sendet das Atom einen Röntgenpuls aus.

In einem konventionellen Laserpuls, der aus vielen Schwingungen besteht, tritt dieser Prozess der Rekombination und Röntgenemission mehrere Male auf, einmal während jedes halben Wellenzyklus. In starkem Gegensatz dazu erlaubt der vom LMU-MPQ Team erzeugte hochintensive und extrem kurze Laserpuls [1] nur eine einzige hochenergetische Rekombination. Das Spektrum des dabei emittierten Lichtpulses liegt zwar im Bereich des weichen Röntgenlichts, ist aber, was seine spektrale Vielfalt betrifft, äquivalent zum gesamten sichtbaren Spektrum, daher kann der erzeugte Puls als "weißes" Röntgenlicht betrachtet werden.

Der hyperkurze Laserpuls wird auf einen Gasjet geschickt und setzt dort den Vorgang der Freisetzung und Rekombination von Elektronen bei einer großen Zahl von Atomen im Gleichtakt in Gang. Die einzelnen Atome senden dann alle zur gleichen Zeit und auf gleiche Weise einen ultrakurzen Röntgen-Blitz aus, und erzeugen so kollektiv einen leistungsstarken Röntgenpuls in Form eines stark gebündelten, laserartigen Strahls.

Durch die Filterung des zentralen Bereichs vom erzeugten "weißen" Röntgenspektrum konnte das LMU-MPQ Team einen Röntgenpuls mit einer Dauer von 170 Attosekunden erzeugen [2]. Dieses Ergebnis lässt vermuten, dass man bei Verwendung des gesamten, doppelt so breiten Spektrums Röntgenpulse erzeugen kann, die erheblich kürzer als 100 Attosekunden sind. Gegenwärtig wird an der Entwicklung von Spiegeln gearbeitet, die Röntgenstrahlen aus diesem Frequenzbereich reflektieren und fokussieren können [3]. Mit solchen Spiegeln lässt sich wahrscheinlich die erste Lichtquelle der Welt verwirklichen, die leistungsstarke laserartige Röntgen-Blitze mit einer Dauer von weniger als hundert Attosekunden erzeugt - die erste Quelle für die Produktion von sub-100-Attosekunden-Licht. Solche Röntgenpulse werden es den Forschern erstmals erlauben, von der Bewegung der Elektronen in Molekülen gewissermaßen "Standbild"-Schnappschüsse zu machen.

Dies wird es ermöglichen, Prozesse aufzulösen, die den Informationstransfer auf molekularer Ebene steuern, und Strukturveränderungen von Biomolekülen zu beobachten [4]. Diese Schnappschüsse werden auch aufzeigen, wo die ultimativen Grenzen für die Geschwindigkeit und die Struktur in elektronischen Bauelementen liegen. Sie werden ferner die Mechanismen des biologischen Informationstransfers und die mikroskopischen Ursprünge der Funktionen und Fehlfunktionen biologischer Makromoleküle offenbaren. [F.K./ O.M.]

Literatur:
[1] A. L. Cavalieri et al., New J. Phys. 9, 242 (2007).
[2] M. Schultze et al., New J. Phys. 9, 243 (2007).
[3] Ulf Kleineberg, unpublished.
[4] E. Goulielmakis et al., Science 317, 769 (2007).
Kontakt:
Prof. Dr. Ferenc Krausz
Geschäftsführender Direktor
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Professor, Lehrstuhl f. Experimentalphysik
Ludwig-Maximilians-Universität München
Telefon: +49 - 89 / 32905 612
Fax: +49 - 89 / 32905 649
E-Mail: ferenc.krausz@mpq.mpg.de
www.attoworld.de, www.munich-photonics.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Atom Attosekunde Röntgenlicht Röntgenpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wärmestrahlung bei kleinsten Teilchen
22.06.2018 | Universität Greifswald

nachricht Quantenwelt: Informationsaustausch braucht Zeit
22.06.2018 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IT-Sicherheit beim autonomen Fahren

22.06.2018 | Informationstechnologie

Göttinger Wissenschaftler entdecken erstaunliche mechanische Eigenschaften von Proteinen

22.06.2018 | Biowissenschaften Chemie

Der photoelektrische Effekt in Stereo

22.06.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics