Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Produkte aus ferromagnetischen Halbleitern

03.08.2007
Dr. Heidemarie Schmidt ist Leiterin der Nachwuchsgruppe "Nano-Spinelektronik", die jetzt im Forschungszentrum Dresden-Rossendorf (FZD) neu eingerichtet wurde. Sie und ihre drei Mitarbeiter interessieren sich für eine neue Material-Spezies: ferromagnetische Halbleiter. In einigen Jahren könnten daraus beispielsweise Spin-LEDs mit faszinierenden neuen Eigenschaften kostengünstig produziert werden.

Frau Dr. Schmidt nutzt mit ihrer Gruppe herkömmliche Standardmaterialien der Halbleiterindustrie wie Galliumarsenid oder Zinkoxid. In solche Materialien implantiert sie magnetische Ionen (Ionen sind geladene Atome), wodurch das Material einen zusätzlichen Schaltermechanismus erhält: das magnetische Moment der implantierten Ionen, das auf der Nanometerskala den Elektronen-Spin beeinflusst.

Die Spinelektronik oder auch Spintronik (aus den Worten Spin und Elektronik) betritt neue Wege, indem sie den Spin der Elektronen zur Informationsdarstellung und -verarbeitung ausnutzt - zusätzlich zur Ladung wie in der herkömmlichen Halbleiter-Elektronik. Das Gebiet ist erst wenige Jahre jung, doch erwarten Forscher schon in naher Zukunft von der Spinelektronik neue Bauelemente, die mit dem Spin des Elektrons schalten und damit um ein Vielfaches schneller sein könnten als heute im Einsatz befindliche Produkte.

Die Grundlage für die Spinelektronik legen derzeit Metalle mit speziellen magnetischen Eigenschaften. Halbleitermaterialien, wie sie in der Mikroelektronik-Industrie verwendet werden, sind dagegen nicht magnetisch. Durch Zumischung von magnetischen Ionen in Halbleitermaterialien entstehen neuartige Materialien für zukünftige Anwendungen in der Spinelektronik. Zum Beispiel lassen sich in ferromagnetischen Halbleitern die optischen Eigenschaften und die Leitfähigkeit auch mit Hilfe magnetischer Felder kontrollieren, also gezielt schalten. Dies ist möglich, weil die implantierten magnetischen Ionen ein internes Magnetfeld im Material aufbauen, mit dem sie alle Spins einheitlich ausrichten, so dass spinpolarisierte Ladungsträger entstehen. Da sich solche Spins umklappen lassen, hat das Halbleitermaterial nun eine zusätzliche Schalterfunktion, womit zum Beispiel die Grundlage für neuartige Spin-Feldeffekttransistoren gelegt wird. Denkbar sind aber auch die weitere Miniaturisierung von Bauteilen oder Materialien mit neuen optischen Eigenschaften, die viel weniger Energie verbrauchen als heute übliche Produkte. Abhängig vom Ausgangsmaterial können zudem Spin-LEDs entwickelt werden, die zirkular polarisiertes Licht aussenden. Dies wiederum wäre ein besonders gut geeignetes und kostengünstiges Detektormaterial für Magnetfelder.

Im Institut für Ionenstrahlphysik und Materialforschung des FZD arbeitet Dr. Heidemarie Schmidt mit ihrem Team nicht nur an der Herstellung von magnetischen Halbleitermaterialien, sondern vor allem auch an der Untersuchung und Nutzbarmachung dieser neuen Material-Spezies. Der Bedarf, etwas zu haben, mit dem man Materialien auf der Nanoskala genauestens charakterisieren kann, ist groß. Deshalb hat die Gruppe eine spezielle Rastersonden-Technik entwickelt, um die Konzentration freier Ladungsträger sowie die Verteilung von elektrischen Defekten zu bestimmen. Die Gruppe interessiert sich vor allem für die Zusammenhänge zwischen den Spin-Eigenschaften auf der Nanoskala und den magnetischen Eigenschaften auf der Makroskala. Die Forscher wollen die bisher erfolgreich hergestellten, schwach ferromagnetischen Halbleiter genauestens verstehen, um sie im nächsten Schritt optimieren zu können. Um nachzuweisen, dass es sich tatsächlich um ferromagnetische Effekte handelt, werden Methoden der Magnetooptik und des Magnetotransports eingesetzt, für die im FZD ebenso Expertise vorhanden ist wie für die Präparation von Halbleitermaterialien. Weltweit ist es übrigens bisher noch keinem Team gelungen, einen starken ferromagnetischen Halbleiter bei Raumtemperatur zu bauen, wie er für zukünftige Produkte der Spinelektronik benötigt würde.

Heidemarie Schmidt: "Ich bin überzeugt, dass es verschiedenen Forschergruppen in den nächsten Jahren gelingen wird, neue Produkte aus ferromagnetischen Halbleitern zu entwickeln. Wir sind jedenfalls sehr froh, dass wir unsere Forschungen gerade hier in Dresden fortsetzen können. Ich erwarte, dass die Nähe zur Mikroelektronik-Industrie uns wichtige Impulse für unsere Arbeiten geben wird und dass wir auch bald schon eng mit den hier ansässigen Firmen zusammenarbeiten werden. Gleichzeitig bietet das Ionenstrahlzentrum des FZD hervorragende Voraussetzungen für die Ionen-Behandlung und die Analyse der neuartigen Materialien, an denen wir arbeiten." Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt im Rahmen des Nachwuchswettbewerbes "Nanotechnologie" bereits seit vier Jahren. Bisher war die Gruppe an der Universität Leipzig angesiedelt.

Weitere Informationen:
Dr. Heidemarie Schmidt / Prof. Dr. Manfred Helm
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2711 / - 2260
heidemarie.schmidt@fzd.de / m.helm@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD) - Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fzd.de
Information:
Das FZD erbringt wesentliche Beiträge der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zu folgenden Fragestellungen:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 57 Mill. Euro (Stand: 12/2006). Hinzu kommen derzeit etwa 10 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: FZD Halbleiter Halbleitermaterial Ion Spin Spinelektronik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics