Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser erkunden den Merkur

01.08.2007
Über den Merkur weiß man bisher nicht viel. 2013 will die Europäische Weltraumbehörde ESA daher zwei Raumsonden starten, die seine Oberfläche genau erfassen sollen. Bei der Mission könnte ein Diodenlasermodul aus Fraunhofer-Laboren dabei sein.

Er ist der kleinste und sonnennächste Planet unseres Sonnensystems: der Merkur. Bislang weiß man wenig über ihn, lediglich die Sonde Mariner 10 stattete dem Planeten vor gut dreißig Jahren einen Besuch ab. Etwa die Hälfte seiner Oberfläche ist dabei fotografisch erfasst worden. Im August 2004 schickte die NASA die Sonde »Messenger« auf die Reise zum Merkur, und für 2013 plant auch die Europäische Weltraumbehörde ESA den Start zweier Raumsonden. Ziel dieser ESA-Mission namens BepiColombo ist unter anderem, den Merkur zu kartieren. Wo sind Krater und Steilhänge, wie tief und groß sind sie? Helfen soll dabei ein Laser-Altimeter: Es schickt einen Laserstrahl auf die Oberfläche des Planeten, der dort reflektiert und zurückgestrahlt wird. Über die Dauer, die der Lichtpuls für diesen Weg braucht, lässt sich berechnen, wie weit die Oberfläche entfernt ist. So wollen die Experten eine dreidimensionale Karte erstellen.

Für diese Laserkartierung haben Forscher des Fraunhofer-Instituts für Lasertechnik ILT in Aachen im Auftrag der TESAT Spacecom GmbH & Co. KG den Prototypen eines Diodenlaser-Pumpmoduls aufgebaut: Es ist robust genug, um die Strapazen der Reise und die extremen Weltraumbedingungen zu überstehen. »Die wesentliche Aufgabe bestand darin, das Lasermodul möglichst leicht und kompakt zu gestalten – bei möglichst großer Leistung«, sagt Martin Traub, der die Entwicklung am ILT geleitet hat. Das Lasermodul wiegt lediglich 650 Gramm und ist 15 x 5 x 5 Zentimeter klein. Auch die Leistung ist mit 530 Watt recht hoch. Erhalten die Fraunhofer-Forscher den Zuschlag für die Weltraummission, soll der Laser durch die Wahl anderer Materialien sogar noch leichter werden. Zum Vergleich: Üblicherweise sind diese Laser so groß wie ein Schuhkarton und wiegen etwa 5 000 Gramm.

Eine weitere Herausforderung: »Auf der Erde kühlt man Diodenlaser dieser Leistungsklasse mit Wasser, was im All nicht möglich ist. Daher wird die Wärme bei unserem Lasermodul durch Wärmeleitung an die Oberfläche des Satelliten transportiert und dort abgestrahlt«, sagt der Experte. Da die Dioden eines Lasers im Vakuum nicht so zuverlässig arbeiten wie bei Atmosphärendruck, haben die Forscher das Lasermodul so entworfen, dass sich die Außenverkleidung luftdicht verschließen lässt. »TESAT ist in der Lage, solche Module mit Luft oder anderen Gasen zu füllen und im Inneren des Lasers eine künstliche Atmosphäre zu erschaffen, die mehrere Jahre lang erhalten bleibt«, sagt Traub.

Martin Traub | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Berichte zu: ESA Laser Lasermodul Merkur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics