Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eindeutiger Quanteneffekt in Silizium-Nanokristallen gefunden

26.07.2007
Quantenpunktmaterialien können die Effizienz von Silizium-Solarzellen verbessern

Wissenschaftler des staatlichen Labors für erneuerbare Energien (NREL - National Renewable Energy Laboratory) des US-Energieministeriums (DOE - Department of Energy) haben in Zusammenarbeit mit Innovalight, Inc. gezeigt, dass ein neuer und entscheidender Effekt, der als mehrfache Exzitonerzeugung (MEG - Multiple Exciton Generation) bezeichnet wird, in Silizium-Nanokristallen in effizienter Weise stattfindet. MEG führt zur Bildung von mehreren Elektronen je absorbiertem Photon.

Silizium ist das in heutigen Solarzellen überwiegend verwendete Halbleitermaterial und hat am Markt der fotovoltaischen Zellen einen Anteil von über 93%. Bis zu dieser Entdeckung wurde das Eintreten von MEG in den vergangenen beiden Jahren nur für Nanokristalle (auch Quantenpunkte genannt) von Halbleitermaterialien gemeldet, die in kommerziellen Solarzellen zur Zeit nicht eingesetzt werden und die umweltschädliche Materialien (wie Blei) enthalten. Das neue Ergebnis öffnet die Tür für eine mögliche Anwendung der MEG zu einer ausserordentlichen Steigerung der Konversionseffizienz von Silizium-Solarzellen, da mehr Sonnenenergie in Elektrizität umgewandelt wird. Das ist ein entscheidender Schritt für eine im Hinblick auf die Kosten wettbewerbsfähige Solarenergie mit konventionellen Energiequellen.

In einem Dokument, das am 24. Juli in der ersten Online-Version des American Chemical Society's Nano Letters Journal (siehe
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/nl071486l)
veröffentlicht wurde, berichtete ein Team von NREL, dass Silikon-Nanokristalle oder Quantenpunkte, die von Innovalight gewonnen wurden, aus einzelnen Photonen des Sonnenlichts, die Wellenlängen von weniger als 420 nm aufweisen, mehrere Elektronen erzeugen können. Wenn bei den heutigen fotovoltaischen Solarzellen ein Photon des Sonnenlichts absorbiert wird, gehen etwa 50% der anfallenden Energie als Wärme verloren. MEG bietet einen Weg, um etwas von dieser als Wärme verlorenen Energie in zusätzliche Elektrizität umzuwandeln.
... mehr zu:
»MEG »NREL »Photon »Quantenpunkt »Solarzelle

Die von Innovalight, Inc., einem Entwickler von Dünnschicht-Solarzellen mit Sitz in Santa Clara im US-Bundesstaat Kalifornien, erzeugten Silikon-Nanokristalle wurden vom NREL im Rahmen einer Zusammenarbeit von Wissenschaftlern des NRELs und Innovalight untersucht. Dem NREL-Team gehörten Matthew C. Beard, Kelly P. Knutsen, Joseph M. Luther, Qing Song, Wyatt Metzger, Randy J. Ellingson und Arthur J. Nozik an.

Die Forschungsergebnisse stellen eine wichtige Erweiterung der verfügbaren Halbleitermaterialien, die MEG aufweisen, dar und sind eine weitere Bestätigung der Pionierarbeit von Nozik, der im Jahr 1997 vorhergesagt hatte, dass Halbleiterquantenpunkte eine effiziente Vervielfachung von Elektronen darstellen und demzufolge die Effizienz von Solarzellen erhöhen könnten.

Bis heute beruhten alle Versuche, die eine Erzeugung mehrerer Elektronen je absorbiertem Photon gezeigt hatten, auf verschiedenen Arten der optischen Spektroskopie. In einem Solarzellengerät ist es erforderlich, die Elektronen, die in den Quantenpunkten erzeugt werden, zu extrahieren und diese dann über einen externen Kreislauf weiterzuleiten, um elektrische Energie zu erzeugen. Derartige Versuche werden derzeit von NREL, Innovalight sowie anderen Labors zur Erbringung des Nachweises durchgeführt, dass MEG tatsächlich zu einer erweiterten Effizienz von Solarzellen führen kann. Die bei NREL von Mark Hanna und Nozik durchgeführten Berechnungen haben gezeigt, dass die maximale theoretische Effizienz von Quantenpunktsolarzellen mit einer optimalen MEG bei normalem, unkonzentriertem Sonnenlicht etwa 44% und bei durch einen Faktor von 500 mit Speziallinsen oder Spiegeln konzentriertem Sonnenlicht 68% beträgt. Die heute gebräuchlichen Solarzellen, die ein Elektron je Photon erzeugen, haben unter denselben solaren Bedingungen eine maximale Effizienz von jeweils 33% und 40%.

Zusätzlich zur effizienten Extrahierung der Elektronen aus den Quantenpunkten in Solarzellen zielt die zukünftige Forschung darauf, MEG bei Wellenlängen zu erzeugen, die eine grössere Überlappung mit dem Sonnenspektrum aufweisen und - bei abnehmender Wellenlänge der Photone - einen wesentlich schärferen Anfang der MEG-Prozesse herbeiführen.

NREL ist das wichtigste staatliche Labor zur Erforschung und Entwicklung erneuerbarer Energien und Energieeffizienz des US-Energieministeriums. Die Forschung von NREL wurde von den DOE-Bereichen Office of Science (Wissenschaftssekretariat), Office of Basic Energy Sciences (Sekretariat für fundamentale Energiewissenschaften), Division of Chemical Sciences, Geosciences and Biosciences (Abteilung für chemische Wissenschaften, Geo- und

Biowissenschaften) finanziert. Das NREL wird für DOE vom Midwest Research Institute und von Battelle geleitet.

George Douglas | presseportal
Weitere Informationen:
http://www.nrel.gov
http://www.innovalight.com

Weitere Berichte zu: MEG NREL Photon Quantenpunkt Solarzelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie