Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremer Fallturm: Katapult-Experimente liefern bemerkenswerte Forschungsergebnisse

24.07.2007
Mit erfolgreichen Fallturmexperimenten unter Anwendung des neuen Katapultsystems haben Wissenschaftler der Universität Bremen jetzt neue Forschungsergebnisse erhalten. Während der ca. neun Sekunden Schwerelosigkeit führten die Forscher des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) Experimente durch, die neue Erkenntnisse über das Strömungsverhalten von Flüssigkeiten mit freien Oberflächen in der Schwerelosigkeit liefern.

Die insgesamt zwölf Experimente dienen dazu, die Handhabung von Flüssigkeiten in der schwierigen Umgebung der Schwerelosigkeit an Bord von Weltraumfahrzeugen zu verbessern. Eine technisch elegante und auch kostengünstige Lösung hierfür sind die so genannten Kapillarkanäle. Dabei handelt es sich um seitlich offene Leitungen, in denen Flüssigkeit strömt. Bei dem untersuchten Kapillarkanal handelt es sich um einen rechteckigen Kanal, der an drei Seiten geschlossen und an einer Seite offen ist, einer so genannten Nut. Die strömende Flüssigkeit wird durch ihre Oberflächenspannung und die guten Benetzungseigenschaften der Flüssigkeit zum Wandmaterial in der Nut gehalten. Welche Kräfte dabei wirksam sind und wie sie interagieren, kann seit einigen Jahren mit den Gleichungen der Strömungsmechanik mathematisch modelliert werden. Diese Modellierung muss allerdings durch Experimente immer wieder überprüft werden.

Diesem Ziel diente auch das Katapult-Experiment, das an einer Nut mit einer Breite von fünf Millimeter, einer Tiefe von 30 Millimeter und einer Länge von elf Millimeter durchgeführt wurde. Eine Hochgeschwindigkeits-Kamera filmte das Experiment während des Katapultschusses. Diese Daten können dann mit Hilfe einer optischen Bildauswertung analysiert und mit dem mathematischen Modell verglichen werden. Als Flüssigkeit wurde ein sehr dünnflüssiges Fluid verwendet, dessen Stoffeigenschaften wie Zähigkeit, Dichte und Oberflächenspannung in Kombination mit der Geometrie des Testkanals realen Treibstoffen sehr ähnlich sind. Die Ergebnisse können somit vom Modell auf ein Raumfahrzeug übertragen werden.

Mit ihrem Experiment konnten die Bremer Forscher jetzt sehr präzise ermitteln, bei welcher Geschwindigkeit die Strömung abreißt und warum das geschieht. Im Kapillarkanal breiten sich nämlich in Längsrichtung Kapillarwellen aus. Sobald die Strömung genauso schnell wird wie diese Wellen, reißt sie ab - ein Phänomen, das "Choking-Effekt" genannt wird. Die neuen Ergebnisse tragen grundlegend dazu bei, bisher kaum verstandene Vorgänge in Kapillarkanälen zu erklären. Weiterhin dienen die Experimente der Vorbereitung eines Raumstationsexperimentes (CCF), welches im Jahr 2009 in Kooperation mit der NASA in der Microgravity Science Glovebox betrieben werden soll. Die Forschungsarbeit des ZARM wird mit Mitteln des Bundesministeriums für Bildung und Forschung durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) gefördert.

Achtung Redaktionen: In der Uni-Pressestelle können Bilder mit Seitenansichten des Kapillarkanals angefordert werden.

Weitere Informationen:

Universität Bremen
Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)
PD Dr.-Ing. Michael Dreyer
Dipl.-Ing. Dennis Haake
E-Mail: dreyer@zarm.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.uni-bremen.de

Weitere Berichte zu: Kapillarkanal Katapult-Experiment Luft- und Raumfahrt ZARM

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften