Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atom oder Molekül? Beides!

20.07.2007
Gleichzeitig schwarz und weiß, aufwärts und abwärts gerichtet - nur die Quantenteilchen des Nanokosmos vermögen zwei Eigenschaften miteinander zu vereinbaren, die sich nach den Gesetzen der klassischen Physik ausschließen.

Forschern um Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik in Garching gelang es jetzt erstmals, einen Überlagerungszustand aus Atom und Molekül in reiner Form zu beobachten. In der Zeitschrift Physical Review Letters (Phys. Rev. Lett. 99, 033201 (2007)) berichten die Wissenschaftler über Experimente, in denen sich Paare aus je zwei Rubidiumatomen nicht entscheiden können, ob sie miteinander eine Molekülbindung eingehen oder im atomaren Zustand verharren sollen. Stattdessen schwingen sie zwischen beiden Zuständen hin und her - bis zu 29 dieser so genannten Rabi-Oszillationen wurden innerhalb einer Messung nachgewiesen. Dazwischen nehmen die Rubidium-Pärchen einen Zustand ein, in dem sie beides, Moleküle und Atome, zugleich sind. Quantenteilchen, die sich in einem solchen zweideutigen Zustand befinden, sind die idealen Kandidaten für Speichereinheiten - so genannte Quantenbits - in Quantencomputern. Zukünftige Präzisionsmessungen der Schwingungsfrequenz könnten überdies Schlüsse auf mögliche Veränderungen der Fundamentalkonstanten zulassen.


Rabi-Oszillationen von Atomen und Molekülen. Durch schnelles Schalten des Magnetfeldes können Atome (gelb) in Moleküle (rot) überführt werden und umgekehrt. Zu bestimmten Zeiten befinden sich die Teilchen in einem Überlagerungszustand (gelb und rot), in dem sie gleichzeitig Atom und Molekül sind. MPQ

In dem hier beschriebenen Experiment wird zunächst eine Wolke von Rubidiumatomen in einer optische Falle eingefangen und auf wenige Milliardstel Grad über dem absoluten Nullpunkt abgekühlt. Hier bilden die Atome ein so genanntes Bose-Einstein-Kondensat, einen Zustand, indem alle (etwa 60 000) Teilchen identisch werden und sich praktisch nicht mehr bewegen. Mit Hilfe eines "optischen Gitters" werden die Atome dann in einer regelmäßigen Struktur angeordnet. Dazu wird durch Einschalten von stehenden Lichtwellen aus drei verschiedenen Raumrichtungen ein Laserlichtfeld erzeugt, dessen Form an einen Stapel von Eierkartons erinnert. Die Vertiefungen in diesem winzigen Kristallgitter aus Licht entsprechen energetisch besonders günstigen Zuständen, in denen sich die Rubidiumatome daher niederlassen.

Der Gitterabstand zwischen den Atomen ist durch die Lichtwellenlänge bestimmt. Er beträgt hier einige hundert Nano (Milliardstel)-Meter und ist damit etwa 1000mal größer als in einem Festkörperkristall. Daher stellt diese Struktur aus Licht und Atomen auch ein ideales System dar, um komplexe Probleme der Festkörperphysik zu modellieren. Die Tiefe der Mulde hängt von der Laserleistung ab und ist hier so gewählt, dass die Atome darin gefangen sind. Dieser hochgradig geordnete Zustand wird Mott-Isolator genannt. Über die Gesamtzahl der Atome im optischen Gitter können die Physiker die Zahl der Atome pro Gitterplatz so steuern, dass sich im mittleren Bereich des Kristalls genau zwei Atome pro Mulde befinden.

Damit sind die wesentlichen experimentellen Voraussetzungen geschaffen, um gezielt Übergänge in den molekularen Zustand anzuregen und anschließend präzise zu vermessen. Zum einen sind die Atome von ihren Nachbarn isoliert und sehen nur den Partner an ihrem jeweiligen Gitterplatz. Durch die Beschränkung auf einen winzigen Bereich stehen dem Pärchen nur wenige diskrete Quantenzustände zur Verfügung, die es als Molekül einnehmen kann. Zum andern sind auch die resultierenden sehr fragilen Moleküle voneinander getrennt und können daher nicht durch zufällige Stöße verloren gehen.

Um die Atome dazu zu bewegen, mit ihrem Partner eine feste Bindung einzugehen, wird abrupt ein Magnetfeld eingeschaltet. Aufgrund der Wechselwirkung des Magnetfeldes mit den magnetischen Momenten der Atome wird die Wahrscheinlichkeit für eine molekulare Bindung bei einem bestimmten Wert für das Magnetfeld genauso groß wie für den atomaren Zustand. Bei dieser so genannten "Feshbach-Resonanz" beginnen die Atome daher, zwischen Single-Dasein und fester Partnerschaft hin- und her zu schwingen. Entsprechend schwankt im Laufe eines Schwingungszyklus die Menge von Atomen bzw. Molekülen im optischen Gitter.

Indem die Zahl der Atome für unterschiedliche Haltezeiten des Magnetfeldes ermittelt wurde, ließen sich die Rabi-Oszillationen über 29 Zyklen nachvollziehen. "Das Wichtigste an diesem Ergebnis ist, dass die Rubidiumpaare während eines Schwingungszyklus einen Zustand durchlaufen, in dem sie sowohl Atom als auch Molekül sind", erläutert Niels Syassen, der die Messung zusammen mit seinen Kollegen im Rahmen seiner Doktorarbeit durchgeführt hat. "Ein solcher kohärenter Überlagerungszustand wurde bisher noch nicht in dieser Reinform beobachtet", betont Prof. Gerhard Rempe. "Damit verfügen wir über neue Möglichkeiten, Quantenregister zu realisieren, in denen verschiedene Informationen auf einem Quantenbit gespeichert werden könnten."

In einem weiteren Experiment nutzen die Wissenschaftler die Rabi-Oszillationen, um zunächst zweiatomige Moleküle im optischen Gitter zu erzeugen. Dann fahren sie das Magnetfeld auf Werte, bei denen die Atome eigentlich lieber single als gebunden wären. Dennoch geht die Partnerschaft nicht immer auseinander. Denn die Moleküle können nur bei bestimmten, diskreten Magnetfeldwerten zerfallen. In den Zwischenbereichen existieren keine Zustände, die die Endprodukte, die Atome, nach den Regeln der Quantenmechanik besetzen dürfen. Solche Messungen zeigen, dass man mit optischen Gittern gezielt Strukturen schneidern kann, die es erlauben, mit instabilen Molekülen so zu hantieren als wären sie stabil.

Die Forscher planen auch, solche Atom-Molekül-Oszillationen mit noch größerer Präzision zu bestimmen und damit Aussagen über atomare Eigenschaften zu erhalten, die wiederum Schlüsse auf möglicherweise extrem geringe Änderungen der Naturkonstanten zulassen. [O.M./N.S.]

Originalveröffentlichung:
N. Syassen, D.M. Bauer, M. Lettner, D. Dietze, T. Volz, S. Dürr and G. Rempe
"Atom-molecule Rabi oscillations in a Mott insulator"
Phys. Rev. Lett., 99, 033201 (2007)
Kontakt
Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dipl. Phys. Niels Syassen
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 245
Fax: +49 - 89 / 32905 - 395
E-Mail: niels.syassen@mpq.mpg.de
Max-Planck-Institut für Quantenoptik
Presse & Kommunikation
Dr. Olivia Meyer-Streng
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Atom Magnetfeld Molekül Rabi-Oszillation Rabi-Oszillationen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI mit neuesten VR-Technologien auf der NAB in Las Vegas

24.04.2017 | Messenachrichten

Leichtbau serientauglich machen

24.04.2017 | Maschinenbau

Daten vom Kühlgerät in die Cloud

24.04.2017 | HANNOVER MESSE