Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln neues Speicherbauelement

12.07.2007
Je langsamer der Rechner und je aufwändiger die Programme, desto länger dauert die Wartezeit beim Hochfahren. Mit dem Warten könnte es allerdings vorbei sein, wenn eine Entwicklung Würzburger Physiker es zur Anwendungsreife bringt. Über die Entdeckung berichtet die Fachzeitschrift Nature Physics in ihrer neuesten Ausgabe.

Sie ist als "Bill-Gates-Gedenkminute" bekannt: Die Zeit, die ein Rechner braucht, bis er sein Betriebssystem und die benötigten Programme geladen hat. Notwendig ist die Pause, weil in dem Computer zwei getrennte Systeme arbeiten: Eines, in dem auf elektrischem Wege die Rechenaktionen ablaufen, und eines, in dem auf magnetischer Basis die Informationen gespeichert werden. Während des Hochfahrens "schaufelt" der Rechner die benötigten Daten von dem einen ins andere System. Das allerdings könnte sich bald ändern:

Im Rahmen der Doktorarbeit von Katrin Pappert ist es am Physikalischen Institut der Uni Würzburg gelungen einen Speicher zu entwickeln, der die Vorteile beider Systeme in sich vereint: Auf die Informationen ist zum einen der direkte und extrem schnelle elektronische Zugriff möglich, zum anderen gehen die Daten beim Abschalten nicht verloren. "Solche Speicher würden das Hochfahren des Computers nach dem Einschalten unnötig machen", sagt Pappert. Man könnte sofort dort weiterarbeiten, wo man am Vortag aufgehört hat. Die Doktorandin forscht am Lehrstuhl für Experimentelle Physik III bei Professor Laurens Molenkamp; das neue Speicherbauelement wurde dort im Rahmen des europäischen Forschungsprojekts Nanospin entwickelt.

"Wir arbeiten mit so genannten ferromagnetischen Halbleitern", erklärt Pappert die Entwicklung. Dieses Material ist in der Lage, so wie die üblichen Metalle in einer Festplatte, Informationen durch ihre Magnetisierungsrichtung zu speichern; gleichzeitig lässt es sich aber auch - anders als die momentan benutzen ferromagnetischen Metalle - direkt in Computerchips integrieren. Für die Chiphersteller hätte dies den Vorteil, dass die Chips ihre Information in der Magnetisierung speichern könnten und sie nicht wie üblich beim Abschalten des Stroms vergessen.

Pappert arbeitet mit Gallium-Mangan-Arsenid, einem Material, bei dem man "sehr gut steuern kann, wie stark magnetisch und wie sehr es leitend ist", sagt sie. Das allein reicht allerdings noch nicht aus, um den Halbleiter im Chip nutzen zu können. Erst wenn die Physikerin unvorstellbar kleine Streifen davon zum Einsatz bringt, zeigt er die gewünschten Eigenschaften. "Wir konnten nachweisen, dass man extrem schmalen Streifen eine Vorzugsrichtung für die Magnetisierung aufprägen kann", so Pappert. Wobei "extrem schmal" etwa 100 millionstel Millimeter bedeutet. Ordnen die Physiker zwei solcher Streifen im rechten Winkel zueinander an, können sie vier unterschiedlich ausgerichtete Magnetisierungen in ihnen erzeugen, mit denen zwei unterschiedliche Widerstände einhergehen; über extrem feine Zuleitungen aus Gold sind sie außerdem in der Lage einen Strom fließen zu lassen - fertig ist der Prototyp für eine elektrisch auslesbare magnetische Speicherzelle.

Bis diese Speicherzelle tatsächlich in einem handelsüblichen Rechner zum Einsatz kommt, wird allerdings noch viel Zeit vergehen. Dafür spricht allein schon die Tatsache, dass Gallium-Mangan-Arsenid die gewünschte Eigenschaft nur bei sehr tiefen Temperaturen zeigt. Pappert etwa arbeitet mit minus 270 Grad Celsius. Trotzdem ist die Physikerin optimistisch, dass in absehbarer Zeit ein anderes Material gefunden wird, "das bei Raumtemperatur funktioniert".

Die technische Umsetzbarkeit steht für sie sowieso nicht an vorderster Stelle: "Wir haben nur demonstriert, dass es funktioniert", sagt sie. Die weitere Entwicklung ist dann ein anderes Kapitel.

Katrin Pappert, Silvia Hümpfner, Charles Gould, Jan Wenisch, Karl Brunner, Georg Schmidt & Laurens W. Molenkamp: "A non-volatile-memory device on the basis of engineered anisotropies in (Ga,Mn)As", Nature Physics, online publiziert am 1. Juli 2007; doi:10.1038/nphys652

Ansprechpartner: Prof. Dr. Laurens Molenkamp, Tel.: (0931) 888 4925, E-Mail: laurens.molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/

Weitere Berichte zu: Magnetisierung Molenkamp Speicherbauelement

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie