Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise ins Gehirn

11.07.2007
Das neue Magnetresonanzzentrum am Max-Planck-Institut für biologische Kybernetik nimmt am 12. Juli seinen Betrieb auf.

Die Gedanken sind bunt - zumindest im Magnetresonanztomografen. Doch wie genau im Gehirn Bilder und Sätze entstehen, ist noch nicht bekannt. Im gerade fertig gestellten Magnetresonanzzentrum am Max-Planck-Institut für biologische Kybernetik wollen Forscher diesem Rätsel nun auf den Grund gehen. Mit drei neuen Magnetresonanztomografen (MRT) werfen sie einen noch genaueren Blick in die Welt im Kopf. Als Leiter des Zentrums konnte der MRT-Pionier Kamil Ugurbil aus den USA gewonnen werden. Mit einem 16,4-Tesla-, einem 9,4-Tesla- und einem 3-Tesla-MRT werden er und seine Mitarbeiter ab dem 12. Juli 2007 die Arbeit aufnehmen und den Stoffwechsel des Gehirns mit höherer Genauigkeit als bisher untersuchen können.


Einblick in den Kopf: Mit den drei Tomografen des Magnetresonanzzentrums untersuchen Wissenschaftler Menschen und Tiere. Hier zu sehen ist der 9,4-Tesla-Magnet mit einer Liegefläche für die Probanden. Bild: MPI für biologische Kybernetik

Zwei Prozent unserer Körpermasse verbrauchen 20 Prozent der gesamten Energie: das Gehirn braucht für seine Leistungen viel Treibstoff. Rund 100 Milliarden Nervenzellen, das ist eine eins mit 12 Nullen, koordinieren unsere fünf Sinne und lassen den Menschen fühlen, kommunizieren und denken. Selbst die besten Rechner weltweit haben bei einem Bruchteil der Rechenleistung des Gehirns den 10- bis 100-fachen Strombedarf. Wie schaffen das die 100 Billionen Synapsen? Unter dem Direktor Kamil Ugurbil werden Forscher im neuen Magnetresonanzzentrum (MRZ) des Tübinger Max-Planck-Instituts für biologische Kybernetik stärkere Magnetfelder nutzen, um mehr Details in Funktionsweise und Stoffwechsel des Gehirns zu erforschen.

"Bei der Magnetresonanztomografie richten sich die Atomkerne im Körper zunächst in einem starken Magnetfeld aus. Kurze Radiowellenimpulse bringen sie dann aus dem Gleichgewicht, wodurch sie wie ein Kreisel rotieren", sagt Direktor Ugurbil. Da dieses Verfahren den Spin der Atomkerne nutzt, heißt es auch Kernspintomografie. "Wenn die Kerne rotieren, wirken sie wie kleine Sendeantennen und induzieren in körpernahen Spulen einen Strom, der gemessen wird", erklärt Ugurbil. Nach diesem Prinzip bringt der Tomograf Atomkerne im Gehirn oder auch in anderen Körperteilen schichtweise zum Senden. Der Rechner setzt dann die vielen Schichtbilder mit unterschiedlichen Signalen zu einem dreidimensionalen Bild zusammen. 2003 erhielten Paul Lauterbur und Peter Mansfield für die Entwicklung und genaue Steuerung dieser Technologie den Nobelpreis für Medizin.

"Je höher das Magnetfeld, desto stärker werden die aufgezeichneten Signale. Mit höheren Feldern können deshalb Bilder mit höherer Empfindlichkeit und Ortsauflösung aufgenommen werden", so Ugurbil. Im klinischen Bereich werden so fast ausschließlich die häufig vorkommenden Wasserstoffatome untersucht. Die höheren Magnetfelder der Tomografen im neuen MRZ ermöglichen es jetzt den Wissenschaftlern, andere chemische Elemente zu messen, die im menschlichen Körper seltener vorkommen. "Mit den stärkeren Magneten wollen wir auch die Elemente Kohlenstoff, Sauerstoff, Fluor und Phosphor im Gehirn darstellen", so Ugurbil. Diese MR-aktiven Stoffe geben unter anderem Aufschluss, wie die Neurotransmitter Glutamat oder GABA im Gehirn wirken. "So können wir der Schaltzentrale bei der Arbeit zugucken", sagt Ugurbil. Dafür wurden völlig neue MRT-Systeme gebaut: Mit einem 9,4-Tesla-Tomograf, dem größten MRT der Welt, werden die Forscher Menschen untersuchen. Mit einem 16,4-Tesla-System, dem weltweit stärksten, werden sie in Kleintierhirne schauen. Ein klinischer 3-Tesla-Magnet vervollständigt die Instrumente im Zentrum.

Starke und große Magnete alleine reichen aber nicht. Um die Aussagekraft der Bilder weiter zu verbessern, forschen die Wissenschaftler auch an neuartigen Kontrastmitteln. Sie werden dem Körper zugeführt, um bestimmte Signale zu verstärken oder abzuschwächen. "Wir entwickeln intelligente Kontrastmittel, die von gesunden und kranken Zellen unterschiedlich aufgenommen werden, die also nur in bestimmten Zielzellen, beispielsweise Tumorzellen, aktiv werden", erklärt Ugurbil. So können auch bestimmte Typen von Nervenzellen gezielt dargestellt und ihre Funktionsweise untersucht werden.

"Die weltweit einmalige Kombination innovativer Techniken und Geräte im neuen Magnetresonanzzentrum ermöglicht neuartige Einblicke in die hochkomplizierten Vorgänge im Gehirn", sagt Kamil Urgurbil: "Wir haben uns zum Ziel gesetzt, am Ende die funktionellen und bioenergetischen Vorgänge der Nervenzellen im großen Maßstab zu kartografieren."

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atomkern Kybernetik Magnetfeld Magnetresonanzzentrum Nervenzelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics