Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise ins Gehirn

11.07.2007
Das neue Magnetresonanzzentrum am Max-Planck-Institut für biologische Kybernetik nimmt am 12. Juli seinen Betrieb auf.

Die Gedanken sind bunt - zumindest im Magnetresonanztomografen. Doch wie genau im Gehirn Bilder und Sätze entstehen, ist noch nicht bekannt. Im gerade fertig gestellten Magnetresonanzzentrum am Max-Planck-Institut für biologische Kybernetik wollen Forscher diesem Rätsel nun auf den Grund gehen. Mit drei neuen Magnetresonanztomografen (MRT) werfen sie einen noch genaueren Blick in die Welt im Kopf. Als Leiter des Zentrums konnte der MRT-Pionier Kamil Ugurbil aus den USA gewonnen werden. Mit einem 16,4-Tesla-, einem 9,4-Tesla- und einem 3-Tesla-MRT werden er und seine Mitarbeiter ab dem 12. Juli 2007 die Arbeit aufnehmen und den Stoffwechsel des Gehirns mit höherer Genauigkeit als bisher untersuchen können.


Einblick in den Kopf: Mit den drei Tomografen des Magnetresonanzzentrums untersuchen Wissenschaftler Menschen und Tiere. Hier zu sehen ist der 9,4-Tesla-Magnet mit einer Liegefläche für die Probanden. Bild: MPI für biologische Kybernetik

Zwei Prozent unserer Körpermasse verbrauchen 20 Prozent der gesamten Energie: das Gehirn braucht für seine Leistungen viel Treibstoff. Rund 100 Milliarden Nervenzellen, das ist eine eins mit 12 Nullen, koordinieren unsere fünf Sinne und lassen den Menschen fühlen, kommunizieren und denken. Selbst die besten Rechner weltweit haben bei einem Bruchteil der Rechenleistung des Gehirns den 10- bis 100-fachen Strombedarf. Wie schaffen das die 100 Billionen Synapsen? Unter dem Direktor Kamil Ugurbil werden Forscher im neuen Magnetresonanzzentrum (MRZ) des Tübinger Max-Planck-Instituts für biologische Kybernetik stärkere Magnetfelder nutzen, um mehr Details in Funktionsweise und Stoffwechsel des Gehirns zu erforschen.

"Bei der Magnetresonanztomografie richten sich die Atomkerne im Körper zunächst in einem starken Magnetfeld aus. Kurze Radiowellenimpulse bringen sie dann aus dem Gleichgewicht, wodurch sie wie ein Kreisel rotieren", sagt Direktor Ugurbil. Da dieses Verfahren den Spin der Atomkerne nutzt, heißt es auch Kernspintomografie. "Wenn die Kerne rotieren, wirken sie wie kleine Sendeantennen und induzieren in körpernahen Spulen einen Strom, der gemessen wird", erklärt Ugurbil. Nach diesem Prinzip bringt der Tomograf Atomkerne im Gehirn oder auch in anderen Körperteilen schichtweise zum Senden. Der Rechner setzt dann die vielen Schichtbilder mit unterschiedlichen Signalen zu einem dreidimensionalen Bild zusammen. 2003 erhielten Paul Lauterbur und Peter Mansfield für die Entwicklung und genaue Steuerung dieser Technologie den Nobelpreis für Medizin.

"Je höher das Magnetfeld, desto stärker werden die aufgezeichneten Signale. Mit höheren Feldern können deshalb Bilder mit höherer Empfindlichkeit und Ortsauflösung aufgenommen werden", so Ugurbil. Im klinischen Bereich werden so fast ausschließlich die häufig vorkommenden Wasserstoffatome untersucht. Die höheren Magnetfelder der Tomografen im neuen MRZ ermöglichen es jetzt den Wissenschaftlern, andere chemische Elemente zu messen, die im menschlichen Körper seltener vorkommen. "Mit den stärkeren Magneten wollen wir auch die Elemente Kohlenstoff, Sauerstoff, Fluor und Phosphor im Gehirn darstellen", so Ugurbil. Diese MR-aktiven Stoffe geben unter anderem Aufschluss, wie die Neurotransmitter Glutamat oder GABA im Gehirn wirken. "So können wir der Schaltzentrale bei der Arbeit zugucken", sagt Ugurbil. Dafür wurden völlig neue MRT-Systeme gebaut: Mit einem 9,4-Tesla-Tomograf, dem größten MRT der Welt, werden die Forscher Menschen untersuchen. Mit einem 16,4-Tesla-System, dem weltweit stärksten, werden sie in Kleintierhirne schauen. Ein klinischer 3-Tesla-Magnet vervollständigt die Instrumente im Zentrum.

Starke und große Magnete alleine reichen aber nicht. Um die Aussagekraft der Bilder weiter zu verbessern, forschen die Wissenschaftler auch an neuartigen Kontrastmitteln. Sie werden dem Körper zugeführt, um bestimmte Signale zu verstärken oder abzuschwächen. "Wir entwickeln intelligente Kontrastmittel, die von gesunden und kranken Zellen unterschiedlich aufgenommen werden, die also nur in bestimmten Zielzellen, beispielsweise Tumorzellen, aktiv werden", erklärt Ugurbil. So können auch bestimmte Typen von Nervenzellen gezielt dargestellt und ihre Funktionsweise untersucht werden.

"Die weltweit einmalige Kombination innovativer Techniken und Geräte im neuen Magnetresonanzzentrum ermöglicht neuartige Einblicke in die hochkomplizierten Vorgänge im Gehirn", sagt Kamil Urgurbil: "Wir haben uns zum Ziel gesetzt, am Ende die funktionellen und bioenergetischen Vorgänge der Nervenzellen im großen Maßstab zu kartografieren."

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atomkern Kybernetik Magnetfeld Magnetresonanzzentrum Nervenzelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik