Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Röntgenlaser der Chemie des Universums auf der Spur

03.07.2007
Max-Planck-Wissenschaftler haben in Zusammenarbeit mit dem DESY Hamburg am FLASH-Laser in einem Pionierexperiment erstmals den Aufbruch von Molekülionen durch harte UV-Strahlung abgebildet.

Die Ergebnisse weisen nach, dass bisherige theoretische Modellrechungen unvollständig waren, und demonstrieren zugleich einen nunmehr experimentellen Zugang zu bestimmten chemischen Prozessen im Universum. Wie sich hochangeregte molekulare Materie unter dem Einfluss energiereicher elektromagnetischer Strahlung verhält, wird damit unter Laborbedingungen beobachtbar. Dies bedeutet einen erheblichen Fortschritt für die Grundlagenforschung, aber auch für angewandte Wissenschaften.


Abbildung 1. Links: Aufbruch der chemischen Bindung des Molekülions HeH+ durch hartes UV-Licht bei 32 nm Wellenlänge parallel (a) und senkrecht (b) zur Polarisationsrichtung der Photonen (blauer Doppelpfeil). Rechts: Flugzeiten und Orte der nachgewiesenen Fragmente. Die Farbskala (von blau nach rot) gibt die Häufigkeit der Ereignisse an. Es wird vorzugsweise ein Aufbruch des Moleküls senkrecht zur Polarisation (Doppelpfeil) beobachtet. Die Ereignisse formen einen Ring, dessen Radius Auskunft über die Energiebilanz der Reaktion liefert. Grafik: MPI für Kernphysik

Das Verhalten hochangeregter molekularer Materie wirft seit längerer Zeit bislang unbeantwortete Fragen sowohl für die Grundlagenforschung als auch im Hinblick auf mögliche Anwendungen auf. Dies gilt im Besonderen für die Wechselwirkung von Molekülionen, d.h. Molekülen, aus denen ein oder mehrere Elektronen entfernt wurden, mit energetischer elektromagnetischer Strahlung (fernes Ultraviolett (UV) oder Röntgenstrahlung). Im Vergleich zu den Ergebnissen, die in den letzten Jahren bereits für die Wechselwirkung zwischen Molekülionen und Elektronen in Speicherringen erreicht wurden, hat die zu geringe Intensität geeigneter Strahlungsquellen ähnliche Fortschritte mit UV- und Röntgenlicht bisher verhindert. Kürzlich in Betrieb genommene Laserlichtquellen für diesen Wellenlängenbereich erweitern nun die experimentellen Möglichkeiten auf diesem Gebiet in geradezu revolutionärer Weise.

Während die meisten Moleküle im sichtbaren Licht intakt bleiben und sich allenfalls zu höherer chemischer Aktivität anregen lassen, lässt harte UV- oder Röntgenstrahlung sie häufig in ihre Bestandteile aufplatzen. Die Elektronen des Moleküls nehmen dabei die Energie eines Stahlungsquantums auf und es entsteht ein energiereiches instabiles Gebilde, das innerhalb kürzester Zeit zerfällt, wobei sich die Atome neu anordnen und als Bruchstücke - kleinere Moleküle oder auch Atome - wegfliegen. Diese Prozesse sind von großer Bedeutung für chemische Reaktionsketten und -zyklen in verschiedenen Bereichen, so in interstellaren Molekülwolken oder im frühen Universum, aber auch in der hohen Atmosphäre oder in industriellen Plasmen. Molekülionen wie auch ihre Bruchstücke, z.B. sogenannte Radikale, erweisen sich dabei oft als besonders reaktiv und ihre Wechselwirkungen mit harter UV-Strahlung sind noch kaum erforscht. Vorhersagen, wie sich die Strahlungsenergie nach ihrer Aufnahme auf die Bestandteile eines Moleküls überträgt, sind kompliziert, variieren oft von Molekül zu Molekül und ließen sich bisher kaum durch Experimente überprüfen. Somit ist man vielfach auf Modellrechnungen angewiesen, die wiederum auf Grund der Komplexität der Prozesse Näherungen beinhalten.

Ziel der Experimentatoren war daher, den Aufbruch einzelner Moleküle im freien Raum zu beobachten und möglichst alle Bruchstücke ungestört durch die Umgebung in ihrer Bewegung und ihrem inneren Zustand zu vermessen - eine anspruchsvolle Aufgabe! Hierzu bringen die Forscher des Heidelberger Max-Planck-Institut für Kernphysik Moleküle auf hohe Geschwindigkeit, so dass sie einen scharf ausgerichteten Strahl bilden. Während des schnellen Fluges wird ihr Zerfall durch Elektronen oder energiereiche Strahlung ausgelöst. Die Bruchstücke fliegen dann in einem engen Winkelbereich nach vorn weiter, und jedes einzelne hat dabei genug Energie um auf Nachweisgeräten zuverlässig abgebildet zu werden.

Diese Fragmentabbildung mit Hochgeschwindigkeits-Molekülstrahlen ist nun am FLASH, dem neuen Free electron LASer in Hamburg bei DESY, für einzelne Moleküle mit harter UV-Strahlung erstmals gelungen. Für intensive Strahlungspulse im harten UV- oder im weichen Röntgenbereich ist FLASH ist der weltweit erste Freie-Elektronen-Laser. Nach dem Laserprinzip ist die Wellenlänge der Strahlung genau festgelegt; zudem besitzt sie eine definierte Schwingungsrichtung (Polarisation) sowie extrem kurze Pulsdauern. Dabei ist diese Quelle um Größenordungen intensiver als alle bisher in Labors verfügbaren Laser für diesen Bereich des elektromagnetischen Spektrums. In den ersten Experimenten der Max-Planck-Forscher bei FLASH wurde das Molekülion HeH+ untersucht. Es ist eines der grundlegenden Moleküle und sein genaues Verständnis daher von weitreichender Bedeutung, so z.B. für die Chemie des frühen Universums. Auch tritt es beim Zerfall des radioaktiven Tritium-Moleküls (T2) auf, das bei Präzisionsmessungen der Neutrinomasse benutzt wird.

Der FLASH-Strahl wurde mit dem Hochgeschwindigkeits-Molekülstrahl gekreuzt und beleuchtete dann bei jedem Puls ca. 25 schnelle Moleküle. Bei einer Wellenlänge von 32 nm verursacht einer von ca. 1000 Laserpulsen den Zerfall eines einzigen Moleküls, dessen Bruchstücke dann nach einem Meter Flugstrecke mit ungefähr zehn Zentimeter großen Detektoren nachgewiesen wurden, wie in Abb. 1 schematisch dargestellt. Aus dem Auftreffort und der Flugzeit der Bruchstücke vom gut definierten Wechselwirkungspunkt aus kann deren Bewegung dreidimensional rekonstruiert werden, was detaillierte Informationen über jeden einzelnen Zerfallsprozess liefert. Zerbricht das Molekül entlang der Polarisation der FLASH-Photonen (dargestellt durch den hellblauen Doppelpfeil), welche parallel zur Flugrichtung der Moleküle gewählt wurde, so erhält man ein etwas langsameres und ein etwas schnelleres Fragment, welche nacheinander auf den Detektor auftreffen (a). Umgekehrt werden beim Aufbruch senkrecht zur Polarisation die Fragmente praktisch zeitgleich an verschiedenen Orten auf dem Detektor nachgewiesen (b). Das in Abb. 1 rechts gezeigte Ergebnis der Messungen ergab nun eine Überraschung: Die bisher theoretisch betrachteten Molekülzustände hätten für diesen Prozess einen Aufbruch entlang der Polarisation gezeigt. Dagegen fanden die Max-Planck-Forscher überwiegend senkrecht zur Polarisation gerichtete Fragmente, was darauf hindeutet, dass bei Modellrechungen viele der wesentlichen Molekülzustände von HeH+ für diesen Prozess bisher nicht genug Beachtung gefunden haben.

Die Messungen bei FLASH demonstrieren eine Methode, Molekülfragmentation durch energiereiche Strahlung in Einzelprozessen zu abzubilden. In Zukunft wollen die Forscher diese Prozesse auch in komplexeren Molekülen untersuchen. Die so zu gewinnenden Daten sind von weitreichender Bedeutung z.B. für die Frage der Synthese organischer Moleküle im interstellaren Raum und ihrer Überlebensfähigkeit in den Strahlungsfeldern dort. Angesichts der überraschenden Ergebnisse schon an dem einfachen System HeH+ darf man gespannt die weitere Entwicklung dieses neuen Forschungsfeldes verfolgen.

Originalveröffentlichung:
H. B. Pedersen, S. Altevogt, B. Jordon-Thaden, O. Heber et al.
Crossed Beams Photodissociation Imaging of HeH+ with Vacuum Ultraviolet Free-Electron Laser Pulses

Physical Review Letters, Vol. 98, No. 22, 223202, 2007

Kontakt:
Henrik B. Pedersen
Max-Planck-Institut für Kernphysik
Heidelberg
Tel.: +49 6221 516-634
Fax: +49 6221 516-602
h.pedersen@mpi-hd.mpg.de
Andreas Wolf
Max-Planck-Institut für Kernphysik
Heidelberg
Tel.: +49 6221 516-503
Fax: +49 6221 516-602
E-Mail: a.wolf@mpi-hd.mpg.de

Dr. Bernold Feuerstein | idw
Weitere Informationen:
http://www.desy.de
http://link.aps.org/abstract/PRL/v98/e223202
http://www.mpi-hd.mpg.de

Weitere Berichte zu: Flash Molekül Molekülion Polarisation Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics