Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioaktives Eisen - Fenster ins Innere der Sterne

27.06.2007
Max-Planck-Forscher weisen in der Galaxis das Isotop Fe-60 nach

Mit dem europäischen Gammasatelliten INTEGRAL haben Wissenschaftler radioaktives Eisen innerhalb der Milchstraße entdeckt. Obwohl die Eisenatome im interstellaren Gas verteilt sind - also außerhalb der Sterne -, gestatten sie gleichsam einen Blick ins Innere jener massereichen Sonnen, die unsere Galaxis und ihre Spiralarme prägen. Der Nachweis des Isotops Fe-60 gelang einem Team um Roland Diehl vom Max-Planck-Institut für extraterrestrische Physik in Garching bei München.


Der Fingerabdruck des radioaktiven Zerfalls von Fe-60 im interstellaren Gas unserer Galaxis: In dieser Grafik sind beide Gammalinien bei ihren Sollenergien (1173 und 1332 keV) überlagert, um das schwache, mit INTEGRAL gemessene Signal sichtbar zu machen. Bild: Max-Planck-Institut für extraterrestrische Physik

Seit Langem fahnden die Forscher nach radioaktivem Eisen im interstellaren Raum. Vor fast 30 Jahren wurde dort bereits radioaktives Aluminium gefunden, und 1999 hat eine Gruppe der Technischen Universität München in einer Probe aus der südpazifischen Ozeankruste Spuren von Fe-60 entdeckt. Dieses Eisenisotop sollte auch im interstellaren Gas vorkommen. Tatsächlich gab es in den vergangenen Jahren vielversprechende Hinweise, die allerdings interpretationsabhängig waren und kontrovers bewertet wurden.

Für ihre Suche nutzten die Astrophysiker nun ein Gammaspektrometer auf INTEGRAL. Seit Oktober 2002 vermisst der Satellit der europäischen Raumfahrtagentur ESA den Himmel im Licht energiereicher Gammastrahlen. Jetzt spürten die Wissenschaftler um Roland Diehl vom Max-Planck-Institut für extraterrestrische Physik mit dem Observatorium in der Erdumlaufbahn die Fingerabdrücke des begehrten Stoffs auf: Signale bei den beiden für den radioaktiven Zerfall von Eisen-60 charakteristischen Energien 1173 und 1333 Kiloelektronenvolt (keV). Die beobachteten Gammalinien entstehen, wenn Eisen-60 mit einer Halbwertszeit von 1,5 Millionen Jahren zuerst zu kurzlebigen Cobalt-60 und dann (Halbwertszeit 5,3 Jahre) zu stabilem Nickel-60 zerfällt.

... mehr zu:
»Integral

Roland Diehl glaubt, dass damit ein wichtiger Schritt zum Verständnis der Elemententstehung in massereichen Sternen gelungen ist: "Wir haben in letzter Zeit einige Berichte zum vermeintlichen Fund von Eisen-60 diskutiert. Aber das Spektrometer an Bord von INTEGRAL ist mittlerweile das einzige Instrument, das diese Messung genau genug durchführen kann. Jetzt sind wir uns sicher, dass radioaktives Eisen-60 in unserer Galaxis weiträumig existiert, noch heute produziert wird und zerfällt."

Der definitive Nachweis eröffnet ein Fenster ins Innerste der massereichsten Sterne der Milchstraße. Diese Gaskugeln vereinen mehr als die zehnfache Sonnenmasse in sich und leben kurz aber intensiv: Von der Geburt bis zu ihrem Ende in einer gewaltigen Supernova-Explosion vergehen gerade einmal 100 Millionen Jahre. Im Vergleich dazu ist unsere fast fünf Milliarden Jahre alte Sonne ein stellarer Methusalem. Die massereichen Sterne sind die Brutstätten der meisten chemischen Elemente im Universum.

Während der Urknall vor 13,7 Milliarden Jahren im Wesentlichen Wasserstoff und Helium erzeugte, hat sich das interstellare Gas erst im Lauf der Zeit mit den schwereren Elementen angereichert, die in der jeweiligen Sterngeneration durch Kernreaktionen neu entstanden sind. Wenn massereiche Sterne späterer Generationen dann schon geringe Mengen Eisen enthalten, können dort Neutronen-Einfang-Reaktionen ablaufen, die aus den stabilen Eisenisotopen das schwerere Fe-60 machen.

Bisher konnten sich die Astrophysiker bei kernphysikalischen Studien der Entstehung neuer Elemente im heutigen Universum nur auf ein einziges Element stützen: das im Jahr 1978 von einem amerikanischen Satelliten erstmals aufgespürte Aluminium-26-Isotop. Es zerfällt mit einer Halbwertszeit von 740.000 Jahren und ist mittlerweile von mehreren Teleskopen auf verschiedene Weise vermessen worden. "Studien zu radioaktivem Aluminium-26 haben sich zu einem eigenständigen astronomischen Bereich entwickelt", sagt Roland Diehl.

Eisen-60-Radioaktivität gibt den Astrophysikern neue Möglichkeiten, da es in denselben Sterntypen produziert wird wie Aluminium-26, allerdings in anderen Regionen und zu anderen Entwicklungsphasen - nämlich später und weiter innen. Massereiche Sterne durchlaufen nacheinander Phasen der Kernfusion von zunächst leichten zu zunehmend schwereren Elementen (letztere nennen Astronomen "Metalle") und entwickeln so ihren charakteristischen zwiebelschalenähnlichen inneren Aufbau.

Eisen-60 entsteht in den durch Konvektion gut durchmischten Zonen, in denen Helium- und Kohlenstoff-Fusionsreaktionen ablaufen. Das geschieht allerdings so spät im Entwicklungszyklus des Sterns, dass die radioaktive Asche dieser Zonen erst durch die Supernova am Ende des Sternlebens in den freien Weltraum geschleudert wird. Bei radioaktivem Aluminium-26 nimmt man an, dass bereits die intensiven Sternwinde der sogenannten Wolf-Rayet-Phase die Produkte von frühen, auch Aluminium-26 erzeugenden Fusionsphasen enthalten.

"Eisen-60 ist unser Eingangstor zu den Studien, die Neutronen-Einfang-Reaktionen in aktuellen Sterngenerationen untersuchen", sagt Max-Planck-Forscher Diehl. "Etliche Kernphysik-Laboratorien haben Messungen neu aufgelegt, um den radioaktiven Zerfall verschiedener Eisenisotope zu untersuchen und nachzumessen, wie leicht oder schwer Neutronen von diesen Isotopen eingefangen werden können."

Mit INTEGRAL sind in den vergangenen Jahren neue und detailreiche Messungen zu Aluminium-26 gelungen. Daher können die Astrophysiker nun das Verhältnis der Gammastrahlung von Eisen-60 zu Aluminium-26 genau bestimmen - und damit die Modellvorstellungen zur Elemententstehung in diesen Sternen testen. Studien haben im vergangenen Jahrzehnt für das Isotopverhältnis Werte zwischen 10 und 100 vorhergesagt, wobei die neuesten Vorhersagen erfreulicherweise mit den INTEGRAL-Messungen in Einklang stehen. Das könnte aber eher glückliche Fügung sein. Die Ergebnisse zu Eisen-60 haben Theoretiker und Kernphysiker stimuliert, diesen Test jetzt noch einmal genauer unter die Lupe zu nehmen.

Obgleich INTEGRAL die Gammastrahlung des interstellaren Eisen-60 klar sieht, ist die Intensität noch zu gering, um ein Abbild des Himmels (eine Intensitätskarte) zu erstellen. Es wäre interessant, die hellen und dunklen Stellen der Milchstraßenebene im Gammalicht von Eisen-60 mit der von Aluminium-26 zu vergleichen. Die Max-Planck Forscher wollen die nächsten INTEGRAL-Betriebsjahre nutzen, um erste Vorstellungen davon zu erhalten. "Die Kartografie der Verteilung von Eisen-60 in unserer Galaxis ist ein Projekt für eine zukünftige Generation von Gammateleskopen", sagt Roland Diehl.

Originalveröffentlichung:

Wang W., Harris M., Diehl R., Halloin H., Cordier B., Strong A.W., Kretschmer K., Knödlseder J., Jean P., Lichti G.G., Roques J.-P., Schanne S., von Kienlin A., Weidenspointner G., Wunderer C.
SPI observations of the diffuse 60Fe emission in the Galaxy
Astronomy & Astrophysics, DOI: 10.1051/0004-6361:20066982; erschienen im ARXIV Preprint-Service als arXiv:0704.3895

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Integral

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie

Neurone am Rande der Katastrophe: Wie das Gehirn durch kritische Zustände effizient arbeitet

23.03.2017 | Seminare Workshops

Müll in den Weltmeeren überall präsent: 1220 Arten betroffen

23.03.2017 | Ökologie Umwelt- Naturschutz