Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Wellblech mit großer magnetischer Wirkung

26.06.2007
Wissenschaftler des Forschungszentrums Dresden-Rossendorf konnten zeigen, dass sich magnetische Eigenschaften von Materialien gezielt durch Nano-Strukturen auf der Oberfläche beeinflussen lassen. Dieser erstmalig beobachtete Effekt erlaubt ein tieferes Verständnis von magnetischen Materialen und könnte die Entwicklung neuartiger Sensoren ermöglichen. Die Ergebnisse wurden jüngst in der Fachzeitschrift "Physical Review B - Rapid Communications" veröffentlicht.

Weltweit versuchen Wissenschaftler, die magnetischen Eigenschaften von Materialen so zu verändern, dass man sie für gezielte Anwendungen optimal anpassen kann. So werden zum Beispiel in der Automobilindustrie Materialen für Winkel-Sensoren benötigt, die eine hohe Stabilität der Magnetisierung aufweisen. Mit diesen Sensoren misst man Winkelpositionen und sie werden zur Ventil- und Lenkradsteuerung eingesetzt. Hier könnten die neuen Erkenntnisse dazu beitragen, dass leistungsfähigere und präzisere Sensoren entwickelt werden.


Nano-Wellblech im 3D-Schema: die veränderten Materialeigenschaften verdanken sich den Atomen an den Kanten (grün) und Ecken (blau) FZD

Jedes Material besitzt ihm eigene Eigenschaften. Die Eigenschaft, Strom zu leiten, ist beispielsweise typisch für Kupfer, nicht jedoch für Holz oder Plastik. Eine Veränderung solcher Materialeigenschaften ist nur innerhalb natürlich vorgegebener Grenzen möglich. Dr. Jürgen Faßbender und Dr. Stefan Facsko haben nun entdeckt, dass spezielle Nano-Strukturen auf der Oberfläche einen entscheidenden Einfluss auf die magnetischen Eigenschaften des gesamten Materials haben. Sie konnten somit erstmalig den Magnetismus auf atomarer Ebene, und damit jenseits natürlicher Grenzen, gezielt verändern.

Dr. Stefan Facsko beschäftigt sich mit Verfahren, um gezielt neuartige Oberflächenstrukturen auf Materialen herzustellen. Mit Hilfe eines Ionenstrahls - das sind schnelle geladene Atome - erzeugt er eine wellenartige Struktur auf einer Siliziumoberfläche. In einem zweiten Schritt wird auf diese behandelte Oberfläche eine ultradünne Schicht eines magnetischen Materials aufgetragen. Diese Schicht übernimmt dabei die wellenartige Struktur der Siliziumoberfläche. So entsteht eine Art Nano-Wellblech, dessen Täler und Berge winzig klein sind. Gerade einmal 2 Nanometer (1 Nanometer entspricht dem Milliardsten Teil eines Meters) hoch sind die erzeugten Strukturen.

... mehr zu:
»FZD »Magnetisierung »Nano-Wellblech

Der Physiker Dr. Jürgen Fassbender untersuchte diese Oberflächenschichten auf ihre magnetischen Eigenschaften. In dem vor kurzem veröffentlichten Artikel in der Fachzeitschrift "Physical Review B - Rapid Communications" beschreibt er die außergewöhnlich starke Richtungsabhängigkeit der magnetischen Eigenschaften im neuen Material. Die gemessenen Daten zeigen, dass es eine Vorzugsrichtung parallel zu den Tälern und Hügeln des Nano-Wellblechs gibt. Das bedeutet, dass eine Richtungsumkehrung der Magnetisierung nur schwer möglich ist. Solch eine höhere Stabilität der Magnetisierung ist beispielsweise für Winkelsensoren eine sehr wünschenswerte Eigenschaft.

Die Ergebnisse der Rossendorfer Forscher zeigen somit erstmalig, dass Veränderungen von Materialoberflächen auf atomarer Skala einen grundlegenden Einfluss auf die magnetischen Eigenschaften des gesamten Materials haben.

Veröffentlichung:
M. O. Liedke, B. Liedke, A. Keller, B. Hillebrands, A. Mücklich, S. Facsko, J. Faßbender "Induced anisotropies in exchange coupled systems on rippled substrates", in: Physical Review B - Rapid Communications, 2007 (Online-Veröffentlichung erfolgt).
Weitere Informationen:
Dr. Jürgen Fassbender / Dr. Stefan Facsko
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3096 oder - 2987
j.fassbender@fzd.de / s.facsko@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit, Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fzd.de
Information:
Das FZD erbringt wesentliche Beiträge der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zu folgenden Fragestellungen:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (http://www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 8 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.wgl.de

Weitere Berichte zu: FZD Magnetisierung Nano-Wellblech

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE