Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Brücke zum Urknall

15.06.2007
Münchner Max-Planck-Forscher erklären mit der Stringtheorie, wie sich das All kurz nach seiner Geburt entwickelt hat

Am Anfang des Universums stößt Albert Einstein an seine Grenzen: Denn beim Urknall gelten nicht die Gesetze der allgemeinen Relativitätstheorie, die das Universum im Großen beschreibt. Vielmehr gehorchte das Weltall am Anfang der Quantengravitation - Raum und Zeit verhielten sich nach denselben Quantengesetzen wie die kleinsten Teilchen. Nun haben Forscher am Max-Planck-Institut für Physik in München eine Brücke zwischen den beiden Theorien geschlagen. Sie haben erstmals beschrieben, wie sich Raum und Zeit in den ersten Sekundenbruchteilen nach dem Big Bang entwickelten - und zwar mit Hilfe der Stringtheorie. Ihre Ergebnisse weisen den Weg, wie das Universum aus der Phase der Quantengravitation in die Ära des kosmologischen Standardmodells übergeht, wie es die Relativitätstheorie beschreibt. (Onlineveröffentlichung Physical Review Letters, 19. Juni 2007)


Die Entstehung von Raum und Zeit anhand der neuen Ergebnisse: Das Universum, hier als Kugel dargestellt, ist kurz nach dem Urknall sehr klein und sehr heiß, Raum und Zeit sind aufgrund von Quanteneffekten unscharf. Mit zunehmender Größe wird das Universum sehr schnell glatt und lässt sich mit der Relativitätstheorie beschreiben. Bild: MPI für Physik

Bei der Geburt des Weltalls war die Materie unendlich dicht und die Raumzeit in einem Punkt unendlich stark gekrümmt. An dieser sogenannten Singularität setzen die Vorschläge für eine Theorie der Quantengravitation an, und beginnt die Arbeit der Münchner Max-Planck-Wissenschaftler. Ausgangspunkt ihrer Überlegungen ist die unscharfe Raumzeit, die Modelle der Quantengravitation liefern. "Daher wirkt das Universum ganz nah am Urknall ziemlich verschrumpelt", sagt Projektleiterin Johanna Erdmenger. Danach lassen sich die Orts- und Zeitkoordinaten eines Punkts nicht gleichzeitig bestimmen; in der Folge wird die Raumzeit selbst verschwommen, also unscharf.

"Auf eine unscharfe Raumzeit kann die klassische Theorie jedoch nicht angewandt werden", erklärt Erdmenger. Sie und ihre Mitarbeiter haben jetzt erstmals ein Modell entwickelt, wie aus dieser unscharfen Quantenraumzeit die klassische Raumzeit entsteht - und zwar mit Hilfe der Stringtheorie. "Nach unserem Modell nimmt die Unschärfe der Raumzeit im sich ausdehnenden Universum extrem schnell ab", sagt Erdmenger. In ihren Rechnungen näherte sich das Team um Erdmenger dem Urknall bis auf Bruchteile von Sekunden.

Die Stringtheorie beschreibt die Elementarteilchen nicht punktförmig, sondern als winzige schwingende Saiten (englisch: strings). Diese Saiten können sowohl geschlossen als auch offen sein. Geschlossene Strings ähneln einem winzigen Gummiring, offene Strings kann man sich wie eingespannte Violinsaiten vorstellen. Die Einspannpunkte sind in diesem Fall selbst dynamische Objekte, sogenannte Dirichlet-Branen (D-Branen) und bewegen sich in der Raumzeit. Offene Strings und D-Branen nutzten die Forscher nun dazu, die Beschaffenheit der Raumzeit nahe dem Urknall zu erklären.
Die Wissenschaftler griffen dabei auf die sogenannte Robertson-Walker-Metrik zurück, welche die Ausdehnung unseres Universums abhängig von der Zeit beschreibt. Da die Robertson-Walker-Lösung an jedem Punkt und in jeder Richtung gleich ist, erklärt sie ein homogenes und isotropes Universum. Das Modell der Münchener Physiker bedeckt die Robertson-Walker-Raumzeit gedanklich mit einem Netz unendlich vieler Saiteneinspannpunkte, mit D-Branen, und verbindet die Punkte untereinander mit offenen Strings.

Für diese Konstruktion beweist das Team um Erdmenger, dass nahe dem Urknall nicht alle Orte der D-Branen in dem Netz gleichzeitig exakt bestimmt werden können, also das kosmologische Standardmodell nicht funktioniert. Weiterhin zeigt ihr Modell jedoch auch, dass diese Unschärfe sehr schnell abnimmt, wenn der Radius des Universums wächst. Daher verhält sich das All schon kurze Zeit nach dem Urknall wieder nach den Gesetzen der allgemeinen Relativitätstheorie.

Das neue Modell könnte erklären, weshalb die Astronomen auf Bildern des Weltraumteleskops Hubble bisher vergeblich nach "Verwischungen" gefahndet haben: Diese quantenmechanischen Effekte waren zwar vorhanden, zeigten sich aber nur Sekundenbruchteile nach dem Urknall - und kein Teleskop vermochte bisher in diese Epoche vorzudringen.

Originalveröffentlichung:

Johanna Erdmenger, René Meyer, Jeong-Hyuck Park
Spacetime Emergence of the Robertson-Walker Universe from a Matrix model
Physical Review Letters

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2007/pressemitteilung200706151/

Weitere Berichte zu: Quantengravitation Raumzeit Stringtheorie Urknall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise