Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Brücke zum Urknall

15.06.2007
Münchner Max-Planck-Forscher erklären mit der Stringtheorie, wie sich das All kurz nach seiner Geburt entwickelt hat

Am Anfang des Universums stößt Albert Einstein an seine Grenzen: Denn beim Urknall gelten nicht die Gesetze der allgemeinen Relativitätstheorie, die das Universum im Großen beschreibt. Vielmehr gehorchte das Weltall am Anfang der Quantengravitation - Raum und Zeit verhielten sich nach denselben Quantengesetzen wie die kleinsten Teilchen. Nun haben Forscher am Max-Planck-Institut für Physik in München eine Brücke zwischen den beiden Theorien geschlagen. Sie haben erstmals beschrieben, wie sich Raum und Zeit in den ersten Sekundenbruchteilen nach dem Big Bang entwickelten - und zwar mit Hilfe der Stringtheorie. Ihre Ergebnisse weisen den Weg, wie das Universum aus der Phase der Quantengravitation in die Ära des kosmologischen Standardmodells übergeht, wie es die Relativitätstheorie beschreibt. (Onlineveröffentlichung Physical Review Letters, 19. Juni 2007)


Die Entstehung von Raum und Zeit anhand der neuen Ergebnisse: Das Universum, hier als Kugel dargestellt, ist kurz nach dem Urknall sehr klein und sehr heiß, Raum und Zeit sind aufgrund von Quanteneffekten unscharf. Mit zunehmender Größe wird das Universum sehr schnell glatt und lässt sich mit der Relativitätstheorie beschreiben. Bild: MPI für Physik

Bei der Geburt des Weltalls war die Materie unendlich dicht und die Raumzeit in einem Punkt unendlich stark gekrümmt. An dieser sogenannten Singularität setzen die Vorschläge für eine Theorie der Quantengravitation an, und beginnt die Arbeit der Münchner Max-Planck-Wissenschaftler. Ausgangspunkt ihrer Überlegungen ist die unscharfe Raumzeit, die Modelle der Quantengravitation liefern. "Daher wirkt das Universum ganz nah am Urknall ziemlich verschrumpelt", sagt Projektleiterin Johanna Erdmenger. Danach lassen sich die Orts- und Zeitkoordinaten eines Punkts nicht gleichzeitig bestimmen; in der Folge wird die Raumzeit selbst verschwommen, also unscharf.

"Auf eine unscharfe Raumzeit kann die klassische Theorie jedoch nicht angewandt werden", erklärt Erdmenger. Sie und ihre Mitarbeiter haben jetzt erstmals ein Modell entwickelt, wie aus dieser unscharfen Quantenraumzeit die klassische Raumzeit entsteht - und zwar mit Hilfe der Stringtheorie. "Nach unserem Modell nimmt die Unschärfe der Raumzeit im sich ausdehnenden Universum extrem schnell ab", sagt Erdmenger. In ihren Rechnungen näherte sich das Team um Erdmenger dem Urknall bis auf Bruchteile von Sekunden.

Die Stringtheorie beschreibt die Elementarteilchen nicht punktförmig, sondern als winzige schwingende Saiten (englisch: strings). Diese Saiten können sowohl geschlossen als auch offen sein. Geschlossene Strings ähneln einem winzigen Gummiring, offene Strings kann man sich wie eingespannte Violinsaiten vorstellen. Die Einspannpunkte sind in diesem Fall selbst dynamische Objekte, sogenannte Dirichlet-Branen (D-Branen) und bewegen sich in der Raumzeit. Offene Strings und D-Branen nutzten die Forscher nun dazu, die Beschaffenheit der Raumzeit nahe dem Urknall zu erklären.
Die Wissenschaftler griffen dabei auf die sogenannte Robertson-Walker-Metrik zurück, welche die Ausdehnung unseres Universums abhängig von der Zeit beschreibt. Da die Robertson-Walker-Lösung an jedem Punkt und in jeder Richtung gleich ist, erklärt sie ein homogenes und isotropes Universum. Das Modell der Münchener Physiker bedeckt die Robertson-Walker-Raumzeit gedanklich mit einem Netz unendlich vieler Saiteneinspannpunkte, mit D-Branen, und verbindet die Punkte untereinander mit offenen Strings.

Für diese Konstruktion beweist das Team um Erdmenger, dass nahe dem Urknall nicht alle Orte der D-Branen in dem Netz gleichzeitig exakt bestimmt werden können, also das kosmologische Standardmodell nicht funktioniert. Weiterhin zeigt ihr Modell jedoch auch, dass diese Unschärfe sehr schnell abnimmt, wenn der Radius des Universums wächst. Daher verhält sich das All schon kurze Zeit nach dem Urknall wieder nach den Gesetzen der allgemeinen Relativitätstheorie.

Das neue Modell könnte erklären, weshalb die Astronomen auf Bildern des Weltraumteleskops Hubble bisher vergeblich nach "Verwischungen" gefahndet haben: Diese quantenmechanischen Effekte waren zwar vorhanden, zeigten sich aber nur Sekundenbruchteile nach dem Urknall - und kein Teleskop vermochte bisher in diese Epoche vorzudringen.

Originalveröffentlichung:

Johanna Erdmenger, René Meyer, Jeong-Hyuck Park
Spacetime Emergence of the Robertson-Walker Universe from a Matrix model
Physical Review Letters

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2007/pressemitteilung200706151/

Weitere Berichte zu: Quantengravitation Raumzeit Stringtheorie Urknall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten