Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Pirouetten

12.06.2007
Forscher aus Berlin und München sehen Molekülen dabei zu, wie sie sich bei photochemischen Reaktionen ultraschnell ausrichten

Die ultraschnelle Trennung von elektrischer Ladung innerhalb eines Moleküls während einer photochemischen Reaktion veranlasst bis zu zehntausend Nachbarmoleküle, sich in molekularen Pirouetten neu zu orientieren. Jetzt haben Forscher zum ersten Mal eine solche durch Licht hervorgerufene Ausrichtung von Molekülen in einem organischen Kristall direkt beobachtet. Die Wissenschaftler aus dem Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie in Berlin und der Ludwig-Maximilians-Universität in München berichten darüber in der jüngsten Ausgabe der Zeitschrift Physical Review Letters (Band 98, Seite 248301).

Für ihre Studie erzeugten sie mit extrem kurzen Lichtimpulsen eine Trennung von positiver und negativer elektrischer Ladung in einzelnen Molekülen, auf welche die Moleküle der Umgebung dann mit einer Änderung ihrer räumlichen Ausrichtung reagieren. Diesen grundlegenden Prozess erfassten die Forscher erstmals durch Beugung von Femtosekunden-Röntgenimpulsen mit hoher Präzision und in Echtzeit.

In der Natur sind chemische und biochemische Reaktionen stark durch das umgebende Medium beeinflusst, zum Beispiel ein wässriges, makromolekulares oder kristallines Milieu. Während des Reaktionsablaufs ändert sich aber die Struktur der Umgebung, die ihrerseits auf die Geschwindigkeit der Reaktion und die Stabilität der Reaktionsprodukte zurück wirkt. Derlei Prozesse laufen häufig im Zeitbereich unterhalb einer Pikosekunde ab, das heißt, sie sind kürzer als das Millionstel einer Millionstel Sekunde.

... mehr zu:
»Ladung »Ladungstrennung »Molekül

Ultrakurze Röntgenimpulse bilden die Änderung von molekularen Strukturen der Umgebung während des Prozesses als eine Abfolge von „Schnappschüssen“ ab. Daraus lassen sich der Abstand und die Ausrichtung der Moleküle direkt bestimmen. Um solche Röntgenblitze zu erzeugen, nutzen die Wissenschaftler aus Berlin und München Ultrakurzpulslaser. Sie untersuchten mit ihrer Methode die durch Licht hervorgerufene Trennung molekularer Ladungen, ein Prozess, wie er zum Beispiel in der Photosynthese auftritt.

Um Änderungen molekularer Abstände und Orientierungen gleichermaßen sichtbar zu machen, wählten die Wissenschaftler als Modellsystem einen Kristall, in dem 4-(Diisopropylamino)benzonitril (DIABN)-Moleküle regelmäßig angeordnet sind. Es gelang ihnen, während und nach der Ladungstrennung strukturelle Änderungen der Molekülumgebung mit einer Präzision von Bruchteilen eines Atomdurchmessers zu bestimmen. So fanden sie heraus, dass die Ladungstrennung im angeregten Molekül elektrische Kräfte hervorruft, durch welche die umgebenden Moleküle je nach Abstand um einen Winkel von bis zu 10 Grad gedreht werden. Auf Grund der großen Reichweite der elektrischen Wechselwirkung nehmen für jedes angeregte Molekül ungefähr zehntausend Umgebungsmoleküle an diesem Vorgang teil. Die Drehbewegungen erfolgen ohne messbare Verzögerung zur Ladungstrennung, die im Bereich weniger Pikosekunden abläuft, und lassen den Abstand der Moleküle unverändert.

Diese mit einer bisher unerreichten Kombination höchster räumlicher und zeitlicher Auflösung erzielten Ergebnisse zeigen, dass in der Natur lokale chemische Reaktionen über elektrische Felder unmittelbar mit Strukturänderungen in einer ausgedehnten Umgebung verbunden sind. Sie ebnen darüber hinaus den Weg zur Untersuchung komplexerer Systeme bis hin zu kristallisierten biologischen Makromolekülen. Neben Laser-getriebenen Röntgenquellen werden in Zukunft auch ultrakurze Röntgenimpulse aus Freie-Elektronen- Lasern für solche Untersuchungen eingesetzt, etwa aus dem in Hamburg im Bau befindlichen XFEL.

Quelle: M. Braun et al.: Ultrafast changes of molecular crystal structure induced by dipole solvation. In: Physical Review Letters (Band 98, 248301)

Ansprechpartner am Max-Born-Institut:
Dr. Michael Wörner, Tel. 030 6392 1470, woerner@mbi-berlin.de
Prof. Dr. Thomas Elsässer, Tel. 030 6392 1400, elsasser@mbi-berlin.de
Ansprechpartner an der LMU München:
Dr. Markus Braun, Tel. 089-2180-9215, markus.braun@physik.uni-muenchen.de
Prof. Dr. Wofgang Zinth, Tel. 089-2180-9201, wolfgang.zinth@physik.uni-muenchen.de

Josef Zens | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Ladung Ladungstrennung Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics